cubical indexed induc ve types
play

Cubical Indexed Induc ve Types Evan Cavallo Carnegie Mellon - PowerPoint PPT Presentation

Cubical Indexed Induc ve Types Evan Cavallo Carnegie Mellon University jww Robert Harper HoTT-UF 2019 0 Higher induc ve types HoTT-UF 2019 1 Higher induc ve types roll quo ents and induc ve types into one HoTT-UF 2019 1


  1. Interlude: seman � cs of cubical type theory Composi � on: strengthening the induc � on hypothesis add homogeneous composi � on ✓ HoTT-UF 2019 17

  2. Interlude: seman � cs of cubical type theory Composi � on: strengthening the induc � on hypothesis add homogeneous composi � on ✓ ( ) generalize coe to heterogeneous composi � on HoTT-UF 2019 17

  3. Cubical induc � ve types: seman � cs HoTT-UF 2019 18

  4. Cubical induc � ve types: seman � cs What are the values of a higher induc � ve type? HoTT-UF 2019 18

  5. Cubical induc � ve types: seman � cs What are the values of a higher induc � ve type? HoTT-UF 2019 18

  6. Cubical induc � ve types: seman � cs What are the values of a higher induc � ve type? HoTT-UF 2019 18

  7. Cubical induc � ve types: seman � cs What are the values of a higher induc � ve type? ( ( HoTT-UF 2019 19

  8. Cubical induc � ve types: seman � cs What are the values of a higher induc � ve type? ( ( Can we implement coercion and composi � on? HoTT-UF 2019 19

  9. Cubical induc � ve types: seman � cs What are the values of a higher induc � ve type? HoTT-UF 2019 20

  10. Cubical induc � ve types: seman � cs What are the values of a higher induc � ve type? Unless R is symmetric and transi � ve, ? may not exist HoTT-UF 2019 20

  11. Cubical induc � ve types: seman � cs What are the values of a higher induc � ve type? Unless R is symmetric and transi � ve, ? may not exist Must revise our choice of values HoTT-UF 2019 20

  12. Cubical induc � ve types: seman � cs Idea: freely add homogeneous composi � on values HoTT-UF 2019 21

  13. Cubical induc � ve types: seman � cs Idea: freely add homogeneous composi � on values ( ( HoTT-UF 2019 21

  14. Cubical induc � ve types: seman � cs Idea: freely add homogeneous composi � on values ( ( ( + boundary reduc � ons ) HoTT-UF 2019 21

  15. Cubical induc � ve types: seman � cs Idea: freely add homogeneous composi � on values ( ( ( + boundary reduc � ons ) Eliminator maps hcom values to hcom s in the target HoTT-UF 2019 21

  16. Cubical induc � ve types: seman � cs Implement coercion by cases HoTT-UF 2019 22

  17. Cubical induc � ve types: seman � cs Implement coercion by cases HoTT-UF 2019 22

  18. Cubical induc � ve types: seman � cs Implement coercion by cases HoTT-UF 2019 22

  19. Cubical induc � ve types: seman � cs Implement coercion by cases HoTT-UF 2019 22

  20. Cubical induc � ve types: seman � cs Implement coercion by cases Why not free coercion values? HoTT-UF 2019 22

  21. Cubical induc � ve types: seman � cs Implement coercion by cases Why not free coercion values? HoTT-UF 2019 22

  22. Cubical induc � ve types: seman � cs Implement coercion by cases Why not free coercion values? cf. Lumsdaine & Shulman HoTT-UF 2019 22

  23. Cubical induc � ve types: seman � cs Theorem (Canonicity). Any term in a HIT evaluates to a value. HoTT-UF 2019 23

  24. Cubical induc � ve types: seman � cs Theorem (Canonicity). Any term in a HIT evaluates to a value. Are we sa � s fi ed with our choice of values? HoTT-UF 2019 23

  25. Cubical induc � ve types: seman � cs Theorem (Canonicity). Any term in a HIT evaluates to a value. Are we sa � s fi ed with our choice of values? any int evaluates to pos , neg , seg , or hcom HoTT-UF 2019 23

  26. Cubical induc � ve types: seman � cs Theorem (Canonicity). Any term in a HIT evaluates to a value. Are we sa � s fi ed with our choice of values? any int evaluates to pos , neg , seg , or hcom Angiuli, Favonia, & Harper: zero-d composi � ons can be excluded HoTT-UF 2019 23

  27. Cubical induc � ve types: seman � cs Theorem (Canonicity). Any term in a HIT evaluates to a value. Are we sa � s fi ed with our choice of values? any int evaluates to pos , neg , seg , or hcom Angiuli, Favonia, & Harper: zero-d composi � ons can be excluded any zero-d int evaluates to pos or neg ✓ HoTT-UF 2019 23

  28. Indexed induc � ve types HoTT-UF 2019 24

  29. Indexed induc � ve types Simultaneously induc � vely de fi ned family of types HoTT-UF 2019 24

  30. Indexed induc � ve types Simultaneously induc � vely de fi ned family of types Vectors of a given length HoTT-UF 2019 24

  31. Indexed induc � ve types Simultaneously induc � vely de fi ned family of types Vectors of a given length Iden � ty types HoTT-UF 2019 24

  32. Indexed induc � ve types What are the values of an indexed induc � ve type? HoTT-UF 2019 25

  33. Indexed induc � ve types What are the values of an indexed induc � ve type? Not only refl ... HoTT-UF 2019 25

  34. Indexed induc � ve types What are the values of an indexed induc � ve type? Not only refl ... Add free coercion values for coercion between indices HoTT-UF 2019 25

  35. Indexed induc � ve types What are the values of an indexed induc � ve type? Not only refl ... Add free coercion values for coercion between indices Coercion in parameters s � ll reduces HoTT-UF 2019 25

  36. Indexed induc � ve types What are the values of an indexed induc � ve type? Not only refl ... Add free coercion values for coercion between indices Coercion in parameters s � ll reduces Size depends on size of indices, but not parameters HoTT-UF 2019 25

  37. Cubical type theory and the future of HITs HoTT-UF 2019 26

  38. Cubical type theory and the future of HITs Gracefully scaling to higher-d is essen � al for prac � ce HoTT-UF 2019 26

  39. Cubical type theory and the future of HITs Gracefully scaling to higher-d is essen � al for prac � ce where does cubical type theory have models? HoTT-UF 2019 26

Recommend


More recommend