csc 2400 announcements
play

CSC 2400 Announcements q HW 1 assigned (Due Wednesday) q Sign up for - PowerPoint PPT Presentation

CSC 2400 Announcements q HW 1 assigned (Due Wednesday) q Sign up for Piazza (30/47) CSC 2400: Computer Systems Number Systems Analog vs. Digital System q Analog Signals - Value varies continuously q Digital Signals - Value limited to a finite set


  1. CSC 2400 Announcements q HW 1 assigned (Due Wednesday) q Sign up for Piazza (30/47)

  2. CSC 2400: Computer Systems Number Systems

  3. Analog vs. Digital System q Analog Signals - Value varies continuously q Digital Signals - Value limited to a finite set - Digital systems more robust q Binary Signals - Has at most 2 values - Used to represent bit values - Bit time T needed to send 1 bit

  4. Why Bits (Binary Digits)? q Computers are built using digital circuits - Inputs and outputs can have only two values - True (high voltage) or false (low voltage) - Represented as 1 and 0 q Can represent many kinds of information - Boolean (true or false) - Numbers (23, 79, …) - Characters (‘a’, ‘z’, …) - Pixels, sounds - Internet addresses

  5. Coding q A single binary input can have two values: 1 or 0 q More bits = more combinations 0 0 0 1 1 0 1 1

  6. Coding q How many values can you represent on 3 bits? q What about n bits?

  7. Binary Numbers q How do you figure out what the value of 1110 two is? - Same way you do for 4173 ten , for instance q Decimal (base 10) - Each digit represents a power of 10 - 4173 ten = 4 x 10 3 + _____________________ q Binary (base 2) - Each bit represents a power of 2 - 1110 two = 1 x 2 3 + _____________________ = 14 ten

  8. Binary Numbers q How do you figure out what the value of 1110 two is? - Same way you do for 4173 ten , for instance q Decimal (base 10) - Each digit represents a power of 10 - 4173 ten = 4 x 10 3 + 1 x 10 2 + 7 x 10 1 + 3 x 10 0 q Binary (base 2) - Each bit represents a power of 2 - 1110 two = 1 x 2 3 + 1 x 2 2 + 1 x 2 1 + 0 x 2 0 = 14 ten

  9. Counting in Binary Base 10 Base 2 0 = 0 1 = 1 2 = 10 3 = 11 4 = _____ 5 = _____ 6 = _____ 7 = _____ 8 = _____ 9 = _____ 10 = _____ 11 = _____ 12 = _____ 13 = _____ 14 = _____ 15 = _____ 16 = _____ 17 = _____ 18 = _____

  10. Counting in Binary Base 10 Base 2 0 = 0000 0 1 = 0000 1 2 = 000 10 3 = 000 11 4 = 00 100 5 = 00 101 6 = 00 110 7 = 00 111 8 = 0 1000 9 = 0 1001 10 = 0 1010 11 = 0 1011 12 = 0 1100 13 = 0 1101 14 = 0 1110 15 = 0 1111 16 = 10000 17 = 10001 18 = 10010

  11. Binary (Base 2) to Decimal q Sum up (bit*weight): 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 Binary Weights 256 128 64 32 16 8 4 2 1 1 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 10000011 two = _______________________________ ten ? 101001100 two = _______________________________ ten ?

  12. Binary (Base 2) to Decimal q Sum up (bit*weight): 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 Binary Weights 256 128 64 32 16 8 4 2 1 1 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0 0 10000011 two = _131___________________________ ten ? 101001100 two = _332___________________________ ten ?

  13. Powers of 2 q Memorize! 2 10 2 9 2 8 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1024 512 256 128 64 32 16 8 4 2 1 2 80 2 70 2 60 2 50 2 40 2 30 2 20 2 10 Yotta Zetta Exa Peta Tera Giga Mega Kilo Y Z E P T G M K

  14. Number Systems Base Character Set 2 {0,1} 3 {0,1,2} 4 {0,1,2,3} 5 {0,1,2,3,4} 6 {0,1,2,3,4,5} 7 {0,1,2,3,4,5,6} 8 {0,1,2,3,4,5,6,7} 9 {0,1,2,3,4,5,6,7,8} 10 {0,1,2,3,4,5,6,7,8,9} 11 {0,1,2,3,4,5,6,7,8,9,A} 12 {0,1,2,3,4,5,6,7,8,9,A,B} 13 {0,1,2,3,4,5,6,7,8,9,A,B,C} 14 {0,1,2,3,4,5,6,7,8,9,A,B,C,D} 15 {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E} 16 {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

  15. Counting in Octal Base 10 Base 8 0 = 0 1 = 1 2 = 2 3 = 3 4 = 4 5 = 5 6 = 6 7 = 7 8 = 10 9 = __ 10 = __ 11 = __ 12 = __ 13 = __ 14 = __ 15 = __ 16 = __ 17 = __ 18 = __

  16. Counting in Octal Base 10 Base 8 0 = 0 00 1 = 1 00 2 = 2 00 3 = 3 00 4 = 4 00 5 = 5 00 6 = 6 00 7 = 7 00 8 = 10 0 9 = 11 0 10 = 12 0 11 = 13 0 12 = 14 0 13 = 15 0 14 = 16 0 15 = 17 0 16 = 20 0 17 = 21 0 18 = 22 0

  17. Octal (Base 8) to Decimal q Sum up (digit*weight): 8 4 8 3 8 2 8 1 8 0 Octal weights 4096 512 64 8 1 2 5 7 1 0 2 2 6 257 8 = _________________________________ 10 ? 10226 8 = _________________________________ 10 ?

  18. Octal (Base 8) to Decimal q Sum up (digit*weight): 8 4 8 3 8 2 8 1 8 0 Octal weights 4096 512 64 8 1 2 5 7 1 0 2 2 6 257 8 = _175_____________________________ 10 ? 10226 8 = _4246____________________________ 10 ?

  19. Counting in Hexadecimal Base 10 Base 16 0 = 0 1 = 1 2 = 2 3 = 3 4 = 4 5 = 5 6 = 6 7 = 7 8 = 8 9 = 9 10 = A 11 = B 12 = C 13 = D 14 = E 15 = F 16 = 10 17 = __ 18 = __

  20. Counting in Hexadecimal Base 10 Base 16 0 = 00 0 1 = 00 1 2 = 00 2 3 = 00 3 4 = 00 4 5 = 00 5 6 = 00 6 7 = 00 7 8 = 00 8 9 = 00 9 10 = 00 A 11 = 00 B 12 = 00 C 13 = 00 D 14 = 00 E 15 = 00 F 16 = 0 10 17 = 0 11 18 = 0 12

  21. Hexadecimal (Base 16) to Decimal q Sum up (hex digit*weight): 16 3 16 2 16 1 16 0 Hexadecimal Weight 4096 256 16 1 A 2 B 1 4 A 6 A2B 16 = _________________________________ 10 ? 14A6 16 = _________________________________ 10 ?

  22. Hexadecimal (Base 16) to Decimal q Sum up (hex digit*weight): 16 3 16 2 16 1 16 0 Hexadecimal Weight 4096 256 16 1 A 2 B 1 4 A 6 A2B 16 = _2603____________________________ 10 ? 14A6 16 = _5286____________________________ 10 ?

  23. Decimal to Binary q Use the Placement Method Powers of 2 1024 512 256 128 64 32 16 8 4 2 1 155 10 = _________________________________ 2 ? 128 goes into 155 once leaving 27 to be placed 1 ? ? ? ? ? ? ? 64 and 32 are too big (make them 0) 16 goes in once leaving 11 1 0 0 1 ? ? ? ? and so on

  24. Decimal to Binary q Use the Placement Method Powers of 2 1024 512 256 128 64 32 16 8 4 2 1 155 10 = _10011011________________________ 2 ? 128 goes into 155 once leaving 27 to be placed 1 ? ? ? ? ? ? ? 64 and 32 are too big (make them 0) 16 goes in once leaving 11 1 0 0 1 ? ? ? ? and so on

  25. You Try It … Powers of 2 1024 512 256 128 64 32 16 8 4 2 1 583 10 = _________________________________ 2 ?

  26. You Try It … Powers of 2 1024 512 256 128 64 32 16 8 4 2 1 583 10 = _1001000111______________________ 2 ?

  27. Hexadecimal Benefits q It is often convenient to write binary (base-2) numbers as hexadecimal (base-16) numbers instead - fewer digits – four bits per hex digit - less error prone – easy to corrupt long string of 1’s and 0’s Binary Hex Decimal Binary Hex Decimal 0000 0 0 1000 8 8 0001 1 1 1001 9 9 0010 2 2 1010 A 10 0011 3 3 1011 B 11 0100 4 4 1100 C 12 0101 5 5 1101 D 13 0110 6 6 1110 E 14 0111 7 7 1111 F 15

  28. Converting from Binary to Hexadecimal q Every four bits is a hex digit - start grouping from right-hand side 0 011101010001111010011010111 3 __ __ __ __ __ __ This is not a new machine representation, just a convenient way to write the number

  29. Converting from Binary to Hexadecimal q Every four bits is a hex digit. - start grouping from right-hand side 0 011101010001111010011010111 3 A 8 F 4 D 7 This is not a new machine representation, just a convenient way to write the number

  30. Exercises 1. Convert the hex value 0x7A8BF7D6 into its binary equivalent: A 8 7 7 B F D 6 0111 1010 ____ ____ ____ ____ ____ ____ 2. Convert the binary 10 0110 1110 1001 0100 1100 0101 1111 2 to hex: 0110 1110 0010 1001 0100 1100 0101 1111 2 6 __ __ __ __ __ __

  31. Exercises 1. Convert the hex value 0x7A8BF7D6 into its binary equivalent: A 8 7 7 B F D 6 0111 1010 1000 1011 1111 0111 1101 0110 2. Convert the binary 10 0110 1110 1001 0100 1100 0101 1111 2 to hex: 0110 1110 0010 1001 0100 1100 0101 1111 2 6 E 9 4 C 5 F

  32. Exercises (contd.) 3. Convert from binary to octal: 10 111 010 100 110 001 011 111 2 111 010 010 100 110 001 011 111 2 __ __ __ __ __ __ __

  33. Exercises (contd.) 3. Convert from binary to octal: 10 111 010 100 110 001 011 111 2 111 010 010 100 110 001 011 111 2 7 2 4 6 1 3 7

  34. Number Systems q The binary, hexadecimal (hex) and octal system share one common feature - they are all based on powers of 2 q Each digit in the hex system is equivalent to a four-digit binary number and each digit in the octal system is equivalent to a 3-digit binary number.

  35. Practice Hex Decimal Binary 10 240 11111111

  36. Practice Hex Decimal Binary 10 16 10000 F0 240 11110000 FF 255 11111111

  37. Arithmetic Operations

  38. Decimal Addition q From right to left, we add each pair of digits q We write the sum, and add the carry to the next column 1 9 8 + 2 6 4 4 6 2 Sum Carry 0 1 1

  39. Hex Addition q Hex addition is similar to decimal addition except that each hex digit has a range of ‘ 0 ’ to ‘ F ’ instead of ‘0’ to ‘9’, and a “carry out” occurs when the sum of hex digits in a particular column exceeds ‘ F ’ (15 decimal). q Examples: 1 1 1 1 C 3 8 5 3 B 9 A C 7 + 2 7 + E D + D 2 E 6 + 2 A E A F 1 1 7 2 1 0 E 8 0

  40. Binary Addition q From right to left, we add each pair of bits 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10 q We write the sum, and add the carry to the next column Base 2 Base 10 (ten) 0 1 1 1 9 8 + 0 0 1 + 2 6 4 4 6 2 Sum Sum Carry Carry 0 1 1

Recommend


More recommend