Elena Pinetti University of Turin& INFN Toyama, 10-09-2019 TAUP2019 elena.pinetti@edu.unito.it DARK MA TTERAND COSMOLOGYTHROUGH CROSS-CORRELA TIONSWITH INTENSITY MAPPING OF NEUTRALHYDROGEN with: S. Camera, N. Fornengo, M. Regis Arxiv: 1909.nnnn
CONTENTS ❑ Why the cross-correlation technique is a powerful approach to indirect detection of DM particles? ❑ Intensity mapping of neutral hydrogen ❑ Angular power spectrum ❑ Detectability of astrophysical sources with current and future detectors ❑ Bounds in Dark Matter parameter space Elena Pinetti 2 UNITO/INFN
DARK MATTER IN THE UNIVERSE ➢ Milky Way ➢ External galaxies ➢ Clusters of galaxies ➢ Cosmic web Elena Pinetti 3 UNITO/INFN
DARK MATTER SEARCHES • Production at collider (e.g. LHC) • Direct detection Detection in underground laboratories (e.g. LNGS) • Indirect detection Detection of messenger produced by annihilation o decay of DM particles: • γ • ν • Cosmic rays ( 𝑓 ± , ҧ 𝑞 , ഥ 𝐸 , antinuclei) Elena Pinetti 4 UNITO/INFN
GAMMA-RAY FLUX FROM DARK MATTER 𝐸𝑁 𝐹 𝛿 , 𝜔 = 1 𝜏 𝑏𝑜𝑜 𝑤 Φ 𝛿 𝛿 𝐹 𝛿 𝐽 𝜔 Angle in the sky DM density 2 4𝜌 2𝑛 𝐸𝑁 𝜍 2 𝑠 𝜇, 𝜔 Particle Energy spectrum 𝐽 𝜔 = න 𝑒𝜇 𝑚.𝑝.𝑡 properties per annihilation event Line of sight Elena Pinetti 5 UNITO/INFN
ANISOTROPIES The Unresolved Gamma-Ray Background is given by the sum of independent astrophysical sources/DM) • At first approximation: isotropic • At deeper level: there are anisotropies Elena Pinetti 6 UNITO/INFN
ANISOTROPIES The Unresolved Gamma-Ray Background is given by the sum of independent astrophysical sources/DM) • At first approximation: isotropic • At deeper level: there are anisotropies Cross-correlation of an EM signal with a gravitational tracer Elena Pinetti 7 UNITO/INFN
Elena Pinetti 8 UNITO/INFN
CONTENTS ✓ Why the cross-correlation technique is a powerful approach to indirect detection of DM particles? ❑ Intensity mapping of neutral hydrogen ❑ Angular power spectrum ❑ Detectability of astrophysical sources with current and future detector ❑ Bounds in Dark Matter parameter space Elena Pinetti 9 UNITO/INFN
OBSERVABLES EM signals Gravitational tracers 𝛿 -rays Camera+, ApJLett 771 (2013) L5 Galaxy catalogues Fornengo+, Frontiers in Physics, 2 (2014) 6 X-rays Camera+, JCAP 06 (2015) 029 Clusters catalogues Fornengo+, Ap. J. Lett. 802 (2015) 1 L1 IR emission Cuoco+, PRD 77 (2008 )123518 Weak lensing cosmic shear Ando+, PRD 90 (2014) 023514 Radio waves Ando, JCAP 1410 (2014) 061 Shirasaki+, PRD 90 (2014) 063502 HI Xia+, APJS 217 (2015) 15 Shirasaki+, PRD 92 (2015) 123540 Regis+, ApJS 221 (2015) 29 Shirasaki+, PRD 94 (2016) 063522 NEW! Troester+, MNRAS 467 (2017) 2706 Branchini+, ApJS 228 (2017) 1 Ammazzalorso+, PRD98 (2018) 103007 Cross-correlation 𝛿 -rays x HI Colavincenzo+, arXiv:1907.05264 Ammazzalorso+, arXiv:1907.13484 Elena Pinetti 10 UNITO/INFN
• Dark Matter • BL Lacertae • Flat-Spectrum Radio Quasar • Misaligned Active Galactic Nuclei • Star-Forming Galaxies GAMMA-RAYS Elena Pinetti 11 UNITO/INFN
Discovering the unknown INTENSITYMAPPING Elena Pinetti 12 UNITO/INFN
INTENSITY MAPPING Discovering the unknown IM is a mapping of the intensity fluctuations of a tracer of the haloes mass It allows to map the large-scale structure of the Universe with a measure of the intensity of the redshifted 21 cm line of HI. Advantages: 𝑤 𝑝 = 1 + 𝑨 −1 𝑤 𝑓 Not necessary to resolve galaxies individually Elena Pinetti 13 UNITO/INFN
CONTENTS ✓ Why the cross-correlation technique is a powerful approach to indirect detection of DM particles? ✓ Intensity mapping of neutral hydrogen ❑ Angular power spectrum ❑ Detectability of astrophysical sources with current and future detector ❑ Bounds in Dark Matter parameter space Elena Pinetti 14 UNITO/INFN
POWER SPECTRA 1 න 𝑒𝜓 𝑘 𝜓 𝑄 𝑗𝑘 𝑙 = 𝑚 (𝑗𝑘) = 𝐷 𝑚 𝜓 2 𝑋 𝑗 𝜓 𝑋 𝜓 , 𝜓 Angular Power Spectrum 𝐽 𝑗 𝐽 𝑘 Window Functions 1ℎ + 𝑄 𝑗𝑘 2ℎ 𝑄 𝑗𝑘 = 𝑄 𝑗𝑘 Non-Linear Power Spectrum 𝑁 𝑛𝑏𝑦 𝑒𝑁 𝑒𝑜 1ℎ = ∗ 𝑔 𝑄 𝑗𝑘 න 𝑒𝑁 𝑔 𝑘 𝑗 𝑁 𝑛𝑗𝑜 𝑁 𝑛𝑏𝑦 𝑁 𝑛𝑏𝑦 𝑒𝑜 𝑒𝑜 2ℎ = ∗ 𝑄 𝑗𝑘 න 𝑒𝑁 1 𝑐 𝑗 𝑔 න 𝑒𝑁 2 𝑐 𝑘 𝑔 𝑘 𝑄 𝑚𝑗𝑜 𝑗 𝑒𝑁 1 𝑒𝑁 2 𝑁 𝑛𝑗𝑜 𝑁 𝑛𝑗𝑜 Elena Pinetti 15 UNITO/INFN
CROSS-CORRELATION HI X 𝛿 -RAYS NEW! Elena Pinetti 16 UNITO/INFN
WINDOW FUNCTIONS E = 5 GeV Elena Pinetti 17 UNITO/INFN
NEW! MODEL VALIDATION: AUTOCORRELATION Measure: Martin et al. (2012) Measure: Ackermann et al. (2018) Elena Pinetti 18 UNITO/INFN
Fermi-LAT EXPERIMENTS Elena Pinetti 19 UNITO/INFN
EXPERIMENTAL CONFIGURATIONS 𝐅 𝐧𝐣𝐨 𝐅 𝐧𝐛𝐲 𝐎 𝛅 𝐠 𝐭𝐥𝐳 𝛕 𝟏 Bin MeerKAT SKA1 [𝐇𝐟𝐖] [𝐇𝐟𝐖] [𝐝𝐧 −𝟓 𝐭 −𝟑 𝐭𝐬 −𝟐 ] [𝐞𝐟𝐡] S [ 𝐞𝐟𝐡 𝟑 ] 4000 15000 1.056 ∙ 10 −17 1 0.5 1.0 0.134 0.9 𝐠 𝐭𝐥𝐳 0.097 0.36 3.548 ∙ 10 −18 2 1.0 1.7 0.184 0.5 t 4000 hr 1 yr 1.375 ∙ 10 −18 3 1.7 2.8 0.398 0.3 𝐎 𝐞 64 133 + 64 8.324 ∙ 10 −19 4 2.8 4.8 0.482 0.2 𝐄 𝐞𝐣𝐭𝐢 [𝐧] 13.5 14.5 3.904 ∙ 10 −19 5 4.8 8.3 0.594 0.2 𝐄 𝐣𝐨𝐮𝐟𝐬𝐠 [𝐥𝐧] 1 10 1.768 ∙ 10 −19 6 8.3 14.5 0.574 0.1 [ 𝐴 𝐧𝐣𝐨 , 𝐴 𝐧𝐛𝐲 ] Band A: [0.0, 0.58] Band 1: [0.35, 3.0] 6.899 ∙ 10 −20 7 14.5 22.9 0.574 0.09 Band B: [0.4, 1.45] Band 2: [0.0, 0.5] 3.895 ∙ 10 −20 8 22.9 39.8 0.574 0.07 Configuration Single-dish Single-dish 1.576 ∙ 10 −20 Interferometer Interferometer 9 39.8 69.2 0.574 0.07 6.205 ∙ 10 −21 10 69.2 120.2 0.574 0.06 3.287 ∙ 10 −21 11 120.2 331.1 0.597 0.06 5.094 ∙ 10 −22 12 331.1 1000 0.597 0.06 Ackermann et al. (2018) Elena Pinetti 20 UNITO/INFN
FORECAST FOR 21 CM LINE X 𝛿 -RAYS SKA1, 1.0-1.7 GeV MeerKAT, 1.0-1.7 GeV Band A: 0 < z < 0.58 Band 2: 0 < z < 0.5 𝛿𝛿 + 𝑂 𝛿 1 𝐼𝐽×𝛿 2 + 𝐼𝐽×𝐼𝐽 + 𝑂 𝐼𝐽 𝐼𝐽×𝛿 = ∆𝐷 𝑚 𝐷 𝑚 𝐷 𝑚 𝐷 𝑚 2 2 2𝑚 + 1 𝑔 𝐶 𝑚,𝛿 𝐶 𝑚,𝐼𝐽 𝑡𝑙𝑧 Elena Pinetti 21 UNITO/INFN
MeerKAT SKA1 Elena Pinetti 22 UNITO/INFN
CONTENTS ✓ Why the cross-correlation technique is a powerful approach to indirect detection of DM particles? ✓ Intensity mapping of neutral hydrogen ✓ Angular power spectrum ❑ Detectability of astrophysical sources with current and future detector ❑ Bounds in Dark Matter parameter space Elena Pinetti 23 UNITO/INFN
SNR FOR ASTROPHYSICAL SOURCES 2 𝐼𝐽 × 𝑇 𝐷 𝑗 𝑇𝑂𝑆 2 = 𝑇𝑂𝑆 = 𝑜 𝜏 𝐼𝐽 ×𝑇 ∆𝐷 𝑗 𝑗=𝑚,𝐹 MeerKAT Single-dish Combined 3.5 σ 3.8 σ Band A Band A: 0 < z < 0.58 3.9 σ 5.4 σ Band B: 0.4 < z < 1.45 Band B SKA 1 Single-dish Combined 5.5 σ 8.1 σ Band 1 Band 1: 0.35 < z < 3 6.2 σ 6.6 σ Band 2 Band 2: 0 < z < 0.5 Elena Pinetti 24 UNITO/INFN
FORECAST FOR DARK MATTER BOUNDS ∆𝜓 2 = 𝜓 𝐸𝑁+𝑇 Δ𝜓 2 𝜏𝑤 = 4 2 2 − 𝜓 𝑇 95% CL MeerKAT SKA1 combined combined combined combined Band A: 0 < z < 0.58 Band B: 0.4 < z < 1.45 Band 1: 0.35 < z < 3 Band 2: 0 < z < 0.5 Elena Pinetti 25 UNITO/INFN
SKA2 + FERMISSIMO SKA2 S [ 𝐞𝐟𝐡 𝟑 ] 30000 𝐠 𝐭𝐥𝐳 0.72 t 1 yr 𝐎 𝐞 70000 𝐄 𝐞𝐣𝐭𝐢 [𝐧] 3.1 𝐄 𝐣𝐨𝐮𝐟𝐬𝐠 [𝐥𝐧] 300 [ 𝐴 𝐧𝐣𝐨 , 𝐴 𝐧𝐛𝐲 ] [0.0, 0.5] Fermissimo 2 ∙ exp Fermi Exposure Fermi Angular Conservative: 0.5 ∙ σ b Fermi resolution 0.2 ∙ σ b Optimistic: Elena Pinetti 26 UNITO/INFN
TAKE HOME MESSAGE 1 The cross-correlation HI × γ -rays is a very promising channel 2 SNR > 5 σ MeerKAT: SNR > 8 σ SKA1: 3 Competitive bounds for DM with SKA1 and SKA2+Fermissimo: 2 σ bound 0.50 × σ v th SKA1+Fermi 2 σ bound 0.01 × σ v th SKA2+Fermissimo 𝒏 𝝍 = 𝟐𝟏𝟏 𝐇𝐟𝐖 5 σ detection 0.10 × σ v th Elena Pinetti 27 UNITO/INFN
TAKE HOME MESSAGE 1 The cross-correlation HI × γ -rays is a very promising channel 2 SNR > 5 σ MeerKAT: SNR > 8 σ SKA1: 3 Competitive bounds for DM with SKA1 and SKA2+Fermissimo: 2 σ bound 0.50 × σ v th SKA1+Fermi 2 σ bound 0.01 × σ v th SKA2+Fermissimo 𝒏 𝝍 = 𝟐𝟏𝟏 𝐇𝐟𝐖 5 σ detection 0.10 × σ v th Elena Pinetti 28 UNITO/INFN
‘Cause you never know! BACKUP SLIDES Elena Pinetti 29 UNITO/INFN
• Forecast for 21 cm line x γ -rays • Forecast SKA1 • Forecast SKA2 + Fermissimo OTHER RESULTSAND • Angular Power Spectrum • Error estimation ERROR ESTIMATION • Noise vs signal for Fermi and Fermissimo Elena Pinetti 30 UNITO/INFN
FORECAST FOR 21 CM LINE X 𝛿 -RAYS NEW! SKA1, 1.7-2.8 GeV SKA1, 1.0-1.7 GeV 𝑛 𝐸𝑁 = 100 GeV Band 2: 0 < z < 0.5 Combined MeerKAT, 1.0-1.7 GeV MeerKAT, 1.7-2.8 GeV Band A: 0 < z < 0.58 Combined Elena Pinetti 31 UNITO/INFN
Recommend
More recommend