real me correla on func ons at finite temperature
play

Real &me correla&on func&ons at finite temperature - PowerPoint PPT Presentation

Real &me correla&on func&ons at finite temperature Based on Formalism + Vacuum Nicolas Wink Pawlowski, Strodthoff, PhysRevD.92.094009 Self-consistent Vacuum N. Strodthoff Strodthoff, arXiv:1611.05036 In collabora/on with J. M.


  1. Real &me correla&on func&ons at finite temperature Based on Formalism + Vacuum Nicolas Wink Pawlowski, Strodthoff, PhysRevD.92.094009 Self-consistent Vacuum N. Strodthoff Strodthoff, arXiv:1611.05036 In collabora/on with J. M. Pawlowski Finite temperature Pawlowski, Strodthoff, NW, in prep Nicolas Wink (ITP Heidelberg) 1 FRG, Heidelberg 2017

  2. Why real /me correla/on func/ons? PACS-CS collabora/on PRL, 115 (2015) no.11, 112002 Chris/ansen, Haas, Pawlowski, Strodthoff Bound state spectrum Transport coefficients Nicolas Wink (ITP Heidelberg) 2 FRG, Heidelberg 2017

  3. From imaginary to real /mes Schwinger-Keldysh contour Matsubara contour Con/nua/on from Matsubara frequencies Use analy/city constrains and KMS condi/on to obtain real /me correla/on func/ons form Matsubara formalism Nicolas Wink (ITP Heidelberg) 3 FRG, Heidelberg 2017

  4. Illustra/ve example Two bosonic fields with Calculate for Calculate Matsubara sum Nicolas Wink (ITP Heidelberg) 4 FRG, Heidelberg 2017

  5. Illustra/ve example Bosonic occupa/on number Replace sum by contour integral: Nicolas Wink (ITP Heidelberg) 5 FRG, Heidelberg 2017

  6. Illustra/ve example Iden/fy ambiguity of the analy/c con/nua/on Mathema/cally rigorous Baym and Mermin, Journal of Mathema/cal Physics 2, 232 (1961) Analy/c off the imaginary axis Correct decay behaviour at infinity Unique physical analy/c con/nua/on iden/fied by sedng everywhere Nicolas Wink (ITP Heidelberg) 6 FRG, Heidelberg 2017

  7. Retarded/Advanced Greens func/on Take limit analy/cally Retarded Greens func/on Numerical extrapola/on Nicolas Wink (ITP Heidelberg) 7 FRG, Heidelberg 2017

  8. Generalisa/on to the FRG No new conceptual problems Kamikado, Strodthoff, von Smekal, Wambach, Eur.Phys.J. C74, 2806 (2014) Tripolt, Strodthoff , von Smekal, Wambach, Phys.Rev. D89, 034010 (2014) Regulator poles No changes Addi/onal poles Nicolas Wink (ITP Heidelberg) 8 FRG, Heidelberg 2017

  9. Applica/on to the O(N)-Model Effec/ve descrip/on of the lightest mesons Calculate spectral func/ons of the O(N) model Nicolas Wink (ITP Heidelberg) 9 FRG, Heidelberg 2017

  10. Applica/on to the O(N)-Model Nicolas Wink (ITP Heidelberg) 10 FRG, Heidelberg 2017

  11. Applica/on to the O(N)-Model Nicolas Wink (ITP Heidelberg) 10 FRG, Heidelberg 2017

  12. Summary & Outlook • Perform analy/c con/nua/on • Conceptual easy algorithm • Finite temperature spectral func/ons • Fully self-consistent trunca/on at finite temperature • Real /me representa/on of ver/ces • Applica/on to different model Nicolas Wink (ITP Heidelberg) 11 FRG, Heidelberg 2017

Recommend


More recommend