copper treatment for single c t t t f si l cell sw
play

Copper Treatment for Single C T t t f Si l Cell SW structure - PowerPoint PPT Presentation

Copper Treatment for Single C T t t f Si l Cell SW structure Cell SW structure 2 nd International Collaboration Meeting on X Band Accelerating Structure on X-Band Accelerating Structure 080514 KEK/SLAC KEK/SLAC Y.Higashi, T.Higo,


  1. Copper Treatment for Single C T t t f Si l Cell SW structure Cell SW structure 2 nd International Collaboration Meeting on X Band Accelerating Structure on X-Band Accelerating Structure 080514 KEK/SLAC KEK/SLAC Y.Higashi, T.Higo, K.Yokoyama V.Dolgashev, S.Tantawi

  2. Field Emission and RF Breakdown in High- Field Emission and RF Breakdown in High- Gradient Room-Temperature Linac Structure J. W. Wang and G. A. Loew SLAC-PUB-7685 October 1997 Pulse rf breakdown studies L. Laurent, G. Caryotakis, G. Scheitrum, D. Sprehn, N. C. Luhmann, Jr SLAC PUB 8409 SLAC-PUB-8409 March 2000

  3. Purpose To find statistically high gradient limit for y g g copper materials by experiments

  4. Who decide high gradient threshold ? � Magnetic field ? Fatigue crack nucleation and micro structure due to pulse F ti k l ti d i t t d t l heating � Electric field ? Dark current ( β of F-N plot) � Surface contaminations/ Crystal defects ? Dust, Copper oxide on surface � Vacuum level ? � Hardness, degradation and purity of material ? � Stored energy ?

  5. Cyclic stress-strain Cyclic stress strain ref: ASM Handbook

  6. Cyclic stress-strain ref: ASM Handbook

  7. Evolution of fatigue slip b bands d N=4x10 3 cycling N=10 4 N=10 4 N=10 5 5

  8. Fatigue slip band on the surface of cycled copper ref: ASM Handbook

  9. Mechanism of Microcrack Nucleation ref: ASM Handbook ref: ASM Handbook

  10. First electron microscope pictures of of 1C-SW-A5.65-T4.6-Cu-KEK-#2 20 March 2008

  11. Grain boundary on iris of high-gradient cell Grain boundary in high electric field area Grain boundary in high magnetic field area Lisa Laurent, 20 March 2008

  12. Cracks between grains and deformation of the grain on outside wall of high gradient cell θ γ 12 γ 12 γ 12 γ 12 γ 11=2 γ 12cos( θ /2) γ 11 Lisa Laurent, 20 March 2008

  13. Scattering of conductive electrons due to grain b boundary and dislocation (speculation) d d di l ti ( l ti ) Mean free pass of conductive Mean free pass of conductive electron 55.6 nm (Ideal crystal) t=4x10-14 sec = 40 fsec Crystal defect J= σ E Electric resistance σ RF Long pulse � Temp.

  14. Mechanical Design WC150 ss Conflat flanges Cu Sample Dimensions copper plug temperature sensor G. Bowden

  15. Stylus profilometer data and normalized pulse heating temperature, pulse heating experiment, first copper sample 24 24 1.3 1 3 1.2 22 1.1 20 Temperature 1 18 ture alized temperat 0.9 0 9 16 16 Height [um] 0.8 14 0.7 12 0.6 10 H Norma 0.5 0 5 8 8 0.4 6 0.3 4 0.2 2 Profilometer Profilometer 0 1 0.1 0 0 0 2 2.5 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 Radius [cm] Profilometer data – Lisa Laurent 11 October 2007

  16. Pulse Heating samples g p 1. OFC-class1 As machined SLAC SLAC etching t hi H 2 treated (1000deg.C) Vacuum baking (600deg.C) 2. 6N-Copper As machined HIP (900deg.C/1000kg/cm 2 ) H 2 treated (1000deg.C) Vacuum baking (600deg.C) 3. Single crystal Copper (100) φ 50mm/1mm thick

  17. Related Literature (1)

  18. Field Emission Dark Current Field Emission Dark Current

  19. Related Literature (1)

  20. Related Literature (2) Related Literature (2)

  21. Instead of HPWR Techniques Instead of HPWR Techniques

  22. Wet Cleaning tech. for Si Wafer was developed by RCA Co Ltd developed by RCA Co. Ltd, • Solvent Solvent Cleaning Re contaminant Cleaning Re-contaminant • H 2 SO 4 /H 2 O 2 (SPM) Organic, metals particles • NH 4 OH/H 2 O 2 /H 2 O (APM) particles, organic metals • HCl/H O /H O (HPM) HCl/H 2 O 2 /H 2 O (HPM) metals particles t l ti l • HF/H 2 O (DHF) oxide film, metals Cu, particles Needs 2-3 steps cleaning Needs 2 3 steps cleaning One step cleaning + megasonic

  23. Surface potential control S f t ti l t l ζ potential - - - - - - -- - - - -- - - - - - Particles - -- - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - Copper surface

  24. Thermal Desorption Analysis

  25. Measurement of Low-energy electron emission from copper surface ( (Work Function change due to surface treatment) g ) Monochro Violet lamp Controller PC metor Counter Sample XY stage Class 1 6N S.C (110) As machined WF=4.78eV 4.89 4.99 HPWR WF=5.16eV 5.06 5.17

  26. My conclusion of the best treatment y • Copper material Copper material Single crystal or large grain or amorphous • Without rf tuning or extremely small • Without rf tuning or extremely small • 1~2 µ m etching • Rising using Si wafer rising solution Ri i i Si f i i l ti • 900deg.C baking • <10 -8 Pa vacuum (long mean free pass) 8 • High shunt impedance cavity

  27. Trial of a new surface cleaning procedure SLAC chemical etching Frontier Cleaner A02 + Megasonic (3 min x 3 time) Ultra-purer water + Megasonic (5 min) IP (50degC, 5min) Diffusion bonding + Brazing (Structure completed) Frontier Cleaner A02 + Megasonic (3 min x 3 time Frontier Cleaner A02 + Megasonic (3 min x 3 time Ultra-purer water + Megasonic (5 min) IP (50degC, 5min) Baking (300-500 degC, 5days) Baking (300 500 degC, 5days) Purged N2 Shipping to SLAC and instauration in high power test stand

Recommend


More recommend