Moving Least Squares Coordinates Josiah Manson and Scott Schaefer Texas A&M University
Barycentric Coordinates • Polygon Domain p 4 p p 3 2 p 0 p 1
Barycentric Coordinates • Polygon Domain P 3 t ( ) P 2 t ( ) P 4 t ( ) P 1 t ( ) P 0 t ( )
Barycentric Coordinates • Polygon Domain f f 4 3 f 2 f 1 f 0
Barycentric Coordinates • Polygon Domain F 3 t ( ) F 2 t ( ) F 4 t ( ) F 1 t ( ) F 0 t ( )
Barycentric Coordinates • Polygon Domain • Boundary Interpolation F 3 t ( ) F 2 t ( ) F 4 t ( ) F 1 t ( ) F 0 t ( ) ˆ F ( P ( t )) F ( t ) i i
Barycentric Coordinates • Polygon Domain • Boundary Interpolation F 3 t ( ) F 2 t ( ) F 4 t ( ) F 1 t ( ) F 0 t ( ) ˆ F ( P ( t )) F ( t ) i i
Barycentric Coordinates • Polygon Domain • Boundary Interpolation f f 4 3 • Basis Functions f 2 f 1 f 0 n ˆ F ( x ) b ( x ) f i i i
Barycentric Coordinates • Polygon Domain • Boundary Interpolation • Basis Functions n ˆ F ( x ) b ( x ) f i i i
Barycentric Coordinates • Polygon Domain • Boundary Interpolation • Basis Functions n ˆ F ( x ) b ( x ) f i i i
Barycentric Coordinates • Polygon Domain • Boundary Interpolation • Basis Functions n ˆ F ( x ) b ( x ) f i i i
Barycentric Coordinates • Polygon Domain • Boundary Interpolation • Basis Functions n ˆ F ( x ) b ( x ) f i i i
Barycentric Coordinates • Polygon Domain • Boundary Interpolation • Basis Functions n ˆ F ( x ) b ( x ) f i i i
Barycentric Coordinates • Polygon Domain • Boundary Interpolation • Basis Functions • Linear Precision n L ( x ) b ( x ) L ( p ) i i i
Barycentric Coordinates • Polygon Domain • Boundary Interpolation • Basis Functions • Linear Precision n L ( x ) b ( x ) L ( p ) i i i
Barycentric Coordinates • Polygon Domain • Boundary Interpolation • Basis Functions • Linear Precision n 1 b i x ( ) i
Other Properties • Desirable Features – Smoothness – Closed-form solution – Positivity • Extended Coordinates – Polynomial Boundary Values – Polynomial Precision – Interpolation of Derivatives – Curved Boundaries
Applications • Finite Element Methods [Wachspress 1975]
Applications • Boundary Value Problems [Ju et al. 2005]
Applications • Free-Form Deformations [Sederberg et al. 1986], [MacCracken et al. 1996], [Ju et al. 2005], [Joshi et al. 2007]
Applications • Surface Parameterization [Hormann et al. 2000], [Desbrun et al. 2002]
Comparison of Methods Wachspress Mean Val. Pos. Mean Val. Max Entropy Harmonic Hermite MVC Moving Least Sqr.
Moving Least Squares Coordinates • A new family of barycentric coordinates • Solves a least squares problem • Solution depends on point of evaluation
Fit a Polynomial to Points V ( x ) ( 1 x x ) 1 1 2 2 argmin n V ( p ) C F ( p ) 1 i i C i ˆ F ( x ) V ( x ) C 1
Fit a Polynomial to Points
Fit a Polynomial to Points
Interpolating Points
Interpolating Points 1 W ( x , p ) 2 x p 2 argmin n W ( x , p ) V ( p ) C F ( p ) i 1 i i C i ˆ F ( x ) V ( x ) C 1
Interpolating Points
Interpolating Line Segments P i , 1 P ( t ) ( 1 t t ) i P i , 2
Interpolating Line Segments P F i , 1 i , 1 P ( t ) ( 1 t t ) F ( t ) ( 1 t t ) i i P F i , 2 i , 2
Interpolating Line Segments P F i , 1 i , 1 P ( t ) ( 1 t t ) F ( t ) ( 1 t t ) i i P F i , 2 i , 2 P ' ( t ) i W ( x , t ) i 2 x P ( t ) i
Interpolating Line Segments P F i , 1 i , 1 P ( t ) ( 1 t t ) F ( t ) ( 1 t t ) i i P F i , 2 i , 2 P ' ( t ) i W ( x , t ) i 2 x P ( t ) i 2 1 n dt argmin W ( x , t ) V ( P ( t )) C F ( t ) i 1 i i C i 0
Line Basis Functions 1 n T A W ( x , t ) V ( P ( t )) V ( P ( t )) dt i i i 1 i i 0 1 n 1 T C A W ( x , t ) V ( P ( t )) F ( t ) dt i i i i i 0
Line Basis Functions ˆ F ( x ) V ( x ) C 1
Line Basis Functions ˆ F ( x ) V ( x ) C 1 1 n 1 T V ( x ) A W ( x , t ) V ( P ( t )) F ( t ) dt 1 i i i i i 0
Line Basis Functions ˆ F ( x ) V ( x ) C 1 1 n 1 T V ( x ) A W ( x , t ) V ( P ( t )) F ( t ) dt 1 i i i i i 0 1 F n i , 1 1 T V ( x ) A W ( x , t ) V ( P ( t ))( 1 t t ) dt 1 i i i F i i , 2 0
Line Basis Functions ˆ F ( x ) V ( x ) C 1 1 n 1 T V ( x ) A W ( x , t ) V ( P ( t )) F ( t ) dt 1 i i i i i 0 1 F n i , 1 1 T V ( x ) A W ( x , t ) V ( P ( t ))( 1 t t ) dt 1 i i i F i i , 2 0 1 F n i , 1 1 T V ( x ) A W ( x , t ) V ( P ( t ))( 1 t t ) dt 1 i i i F i i , 2 0
Line Basis Functions ˆ F ( x ) V ( x ) C 1 1 n 1 T V ( x ) A W ( x , t ) V ( P ( t )) F ( t ) dt 1 i i i i i 0 1 F n i , 1 1 T V ( x ) A W ( x , t ) V ( P ( t ))( 1 t t ) dt 1 i i i F i i , 2 0 1 F n i , 1 1 T V ( x ) A W ( x , t ) V ( P ( t ))( 1 t t ) dt 1 i i i F i i , 2 0 F n i , 1 B ( x ) B ( x ) i , 1 i , 2 F i i , 2
Polygon Basis Functions F n ˆ i , 1 F ( x ) B ( x ) B ( x ) i , 1 i , 2 F i i , 2
Polygon Basis Functions F n ˆ i , 1 F ( x ) B ( x ) B ( x ) i , 1 i , 2 F i i , 2 f F F i i , 1 i 1 , 2 b ( x ) B ( x ) B ( x ) i i , 1 i 1 , 2
Polygon Basis Functions
Polygon Basis Functions
Polygon Basis Functions F n ˆ i , 1 F ( x ) B ( x ) B ( x ) i , 1 i , 2 F i i , 2 f F F i i , 1 i 1 , 2 b ( x ) B ( x ) B ( x ) i i , 1 i 1 , 2 n ˆ F ( x ) b ( x ) f i i i
Polynomial Boundary Values F i , 1 F ( t ) ( 1 t t ) i F i , 2 F i , 1 2 2 F ( t ) ( ( 1 t ) 2 ( 1 t ) t t ) F i i , 2 F F i , 3 i , 1 F i , 2 3 2 2 3 F ( t ) ( ( 1 t ) 3 ( 1 t ) t 3 ( 1 t ) t t ) i F i , 3 F i , 4
Polynomial Boundary Values
Polynomial Boundary Values
Polynomial Precision V ( x ) ( 1 x x ) 1 1 2 2 2 V ( x ) ( 1 x x x x x x ) 2 1 2 1 1 2 2 2 2 3 2 1 1 2 3 V ( x ) ( 1 x x x x x x x x x x x x ) 3 1 2 1 1 2 2 1 1 2 1 2 2
Polynomial Precision Linear Quadratic
Interpolation of Derivatives 2 1 n dt argmin W ( x , t ) V ( P ( t )) C F ( t ) i 1 i i C i 0
Interpolation of Derivatives 2 1 n dt argmin W ( x , t ) V ( P ( t )) C F ( t ) i 1 i i C i 0 2 dt 1 W ( x , t ) G ( t ) C F ( t ) i 1 , i i 0
Recommend
More recommend