CKM Unitarity Violations NP contributions on ∆Γ d can be introduced through unitarity violations of the CKM matrix let λ u = V ∗ ud V ub , λ c = V ∗ cd V cb , λ t = V ∗ td V tb . In the SM: λ u + λ c + λ t = 0 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 7 / 23
CKM Unitarity Violations NP contributions on ∆Γ d can be introduced through unitarity violations of the CKM matrix let λ u = V ∗ ud V ub , λ c = V ∗ cd V cb , λ t = V ∗ td V tb . In the SM: λ u + λ c + λ t = 0 λ u + λ c + λ t + δ CKM = 0 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 7 / 23
CKM Unitarity Violations NP contributions on ∆Γ d can be introduced through unitarity violations of the CKM matrix let λ u = V ∗ ud V ub , λ c = V ∗ cd V cb , λ t = V ∗ td V tb . In the SM: λ u + λ c + λ t = 0 λ u + λ c + λ t + δ CKM = 0 As a very rough estimate (4th family studies) δ d λ 3 = CKM δ s λ 3 = CKM λ ≈ 0 . 23 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 7 / 23
CKM Unitarity Violations NP contributions on ∆Γ d can be introduced through unitarity violations of the CKM matrix let λ u = V ∗ ud V ub , λ c = V ∗ cd V cb , λ t = V ∗ td V tb . In the SM: λ u + λ c + λ t = 0 λ u + λ c + λ t + δ CKM = 0 As a very rough estimate (4th family studies) δ d λ 3 = CKM δ s λ 3 = CKM λ ≈ 0 . 23 = ⇒ enhancement by a factor of 4 in ∆Γ d = ⇒ enhancement by a factor of 1 . 4 in ∆Γ s . Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 7 / 23
How big can ∆Γ d be? Enhancements in ∆Γ d arise from: CKM Unitarity violations. 1 2 New Physics at tree level decays. (¯ db )(¯ ττ ) operators. 3 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 8 / 23
New Physics at tree level decays. The effective Hamiltonian approach � g 2 � g 2 � 2 � 2 1 1 ≡ G F √ ≈ − √ √ k 2 − M 2 M 2 2 2 2 2 2 W W Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 9 / 23
New Physics at tree level decays. The effective Hamiltonian approach � g 2 � g 2 � 2 � 2 1 1 ≡ G F √ ≈ − √ √ k 2 − M 2 M 2 2 2 2 2 2 W W Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 9 / 23
New Physics at tree level decays. The effective Hamiltonian approach � g 2 � g 2 � 2 � 2 1 1 ≡ G F √ ≈ − √ √ k 2 − M 2 M 2 2 2 2 2 2 W W Q qq ′ � ¯ � � q ′ j γ µ P L b j � = d i γ µ P L q i ¯ 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 9 / 23
New Physics at tree level decays. The effective Hamiltonian approach � g 2 � g 2 � 2 � 2 1 1 ≡ G F √ ≈ − √ √ k 2 − M 2 M 2 2 2 2 2 2 W W Q qq ′ � ¯ � � q ′ j γ µ P L b j � = d i γ µ P L q i ¯ 2 QCD corrections Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 9 / 23
New Physics at tree level decays. The effective Hamiltonian approach � g 2 � g 2 � 2 � 2 1 1 ≡ G F √ ≈ − √ √ k 2 − M 2 M 2 2 2 2 2 2 W W Q qq ′ � ¯ � � q ′ j γ µ P L b j � = d i γ µ P L q i ¯ 2 QCD corrections After integrating out the W boson we get: Q qq ′ = � ¯ � � q ′ i γ µ P L b j � d j γ µ P L q i ¯ 1 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 9 / 23
New Physics at tree level decays. H eff = 4 G F C q , q ′ ( M W , µ ) Q qq ′ � � √ λ qq ′ + h . c . i i 2 i =1 , 2 q , q ′ = u , c Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 10 / 23
New Physics at tree level decays. H eff = 4 G F C q , q ′ ( M W , µ ) Q qq ′ � � √ λ qq ′ + h . c . i i 2 i =1 , 2 q , q ′ = u , c with λ qq ′ = V ∗ qd V q ′ b . Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 10 / 23
New Physics at tree level decays. H eff = 4 G F C q , q ′ ( M W , µ ) Q qq ′ � � √ λ qq ′ + h . c . i i 2 i =1 , 2 q , q ′ = u , c with λ qq ′ = V ∗ qd V q ′ b . Wilson Coefficients � M 2 � − 3 α s ( µ ) W C 1 ( µ ) = Ln µ 2 4 π � M 2 � 1 + 3 α s ( µ ) W C 2 ( µ ) = Ln µ 2 N c 4 π Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 10 / 23
Analysis strategy We investigated how constrained by New Physics C 1 and C 2 are. Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 11 / 23
Analysis strategy We investigated how constrained by New Physics C 1 and C 2 are. To analyze the effects of new physics the theoretical result O ( C SM , C SM ) ± σ SM 1 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 11 / 23
Analysis strategy We investigated how constrained by New Physics C 1 and C 2 are. To analyze the effects of new physics the theoretical result O ( C SM , C SM ) ± σ SM 1 2 is compared against the experimental one O exp ± σ exp Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 11 / 23
Analysis strategy We investigated how constrained by New Physics C 1 and C 2 are. To analyze the effects of new physics the theoretical result O ( C SM , C SM ) ± σ SM 1 2 is compared against the experimental one O exp ± σ exp taking into account a shift in C 1 , 2 O ( C SM , C SM → O ( C SM + ∆ C 1 , C SM ) − + ∆ C 2 ) 1 2 1 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 11 / 23
Analysis strategy We investigated how constrained by New Physics C 1 and C 2 are. To analyze the effects of new physics the theoretical result O ( C SM , C SM ) ± σ SM 1 2 is compared against the experimental one O exp ± σ exp taking into account a shift in C 1 , 2 O ( C SM , C SM → O ( C SM + ∆ C 1 , C SM ) − + ∆ C 2 ) 1 2 1 2 � ( σ exp ) 2 + ( σ SM ) 2 |O ( C SM + ∆ C 1 , C SM + ∆ C 2 ) − O exp | < 1 . 64 1 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 11 / 23
Analysis strategy We investigated how constrained by New Physics C 1 and C 2 are. To analyze the effects of new physics the theoretical result O ( C SM , C SM ) ± σ SM 1 2 is compared against the experimental one O exp ± σ exp taking into account a shift in C 1 , 2 O ( C SM , C SM → O ( C SM + ∆ C 1 , C SM ) − + ∆ C 2 ) 1 2 1 2 � ( σ exp ) 2 + ( σ SM ) 2 |O ( C SM + ∆ C 1 , C SM + ∆ C 2 ) − O exp | < 1 . 64 1 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 11 / 23
Constraints over the Wilson coefficients C cc and C cc 1 2 Q = (¯ d γ µ P L c )(¯ c γ µ P L b ) Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 12 / 23
Constraints over the Wilson coefficients C cc and C cc 1 2 Q = (¯ d γ µ P L c )(¯ c γ µ P L b ) Channels and Observables Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 12 / 23
Constraints over the Wilson coefficients C cc and C cc 1 2 Q = (¯ d γ µ P L c )(¯ c γ µ P L b ) Channels and Observables B → X d γ = ⇒ Operator Mixing Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 12 / 23
Constraints over the Wilson coefficients C cc and C cc 1 2 Q = (¯ d γ µ P L c )(¯ c γ µ P L b ) Channels and Observables B → X d γ = ⇒ Operator Mixing � M d � � � Sin 2 β d = Im 12 = ⇒ Double insertion of ∆ B = 1 operators. | M d 12 | Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 12 / 23
Constraints over the Wilson coefficients C cc and C cc 1 2 Q = (¯ d γ µ P L c )(¯ c γ µ P L b ) Channels and Observables B → X d γ = ⇒ Operator Mixing � M d � � � Sin 2 β d = Im 12 = ⇒ Double insertion of ∆ B = 1 operators. | M d 12 | � Γ d � a d sl = Im 12 M d 12 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 12 / 23
Constraints over the Wilson coefficients C cc and C cc 1 2 Q = (¯ d γ µ P L c )(¯ c γ µ P L b ) Channels and Observables B → X d γ = ⇒ Operator Mixing � M d � � � Sin 2 β d = Im 12 = ⇒ Double insertion of ∆ B = 1 operators. | M d 12 | � Γ d � a d sl = Im 12 M d 4 12 2 cc Im � C 2 SM 0 � 2 � 4 � 4 � 2 0 2 cc Re � C 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 12 / 23
New Physics at tree level decays. Calculation of ∆Γ d , s Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 13 / 23
New Physics at tree level decays. Calculation of ∆Γ d , s 4 G F C q , q ′ ( M W , µ ) Q qq ′ H ∆ B =1 � � = √ λ qq ′ + h . c . eff i i 2 q , q ′ = u , c i =1 , 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 13 / 23
New Physics at tree level decays. Calculation of ∆Γ d , s 4 G F C q , q ′ ( M W , µ ) Q qq ′ H ∆ B =1 � � = √ λ qq ′ + h . c . eff i i 2 q , q ′ = u , c i =1 , 2 � � (0) �� 1 < ¯ d 4 x ˆ H ∆ B =1 ( x ) H ∆ B =1 Γ d T � = B d | Im i | B d > 12 eff eff 2 M B d � � c Γ cc , d 2 ) + 2 λ c λ u Γ uc , d u Γ uu , d λ 2 ( C cc 1 , C cc ( C uc 1 , C uc 2 ) + λ 2 ( C uu 1 , C uu = − 2 ) , 12 12 12 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 13 / 23
New Physics at tree level decays. Calculation of ∆Γ d , s 4 G F C q , q ′ ( M W , µ ) Q qq ′ H ∆ B =1 � � = √ λ qq ′ + h . c . eff i i 2 q , q ′ = u , c i =1 , 2 � � (0) �� 1 < ¯ d 4 x ˆ H ∆ B =1 ( x ) H ∆ B =1 Γ d T � = B d | Im i | B d > 12 eff eff 2 M B d � � c Γ cc , d 2 ) + 2 λ c λ u Γ uc , d u Γ uu , d λ 2 ( C cc 1 , C cc ( C uc 1 , C uc 2 ) + λ 2 ( C uu 1 , C uu = − 2 ) , 12 12 12 2 | Γ d ∆Γ d ≈ 12 | cos ( φ d ) Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 13 / 23
Effect of C 1 , C 2 on ∆Γ Up to an enhancement of 1.5 possible. Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 14 / 23
Effect of C 1 , C 2 on ∆Γ Up to an enhancement of 1.5 possible. Up to an enhancement of 1.6 possible. Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 14 / 23
Effect of C 1 , C 2 on ∆Γ Up to an enhancement of 1.5 possible. Up to an enhancement of 1.6 possible. Up to an enhancement of 16 posssible Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 14 / 23
How big can ∆Γ d be? Enhancements in ∆Γ d arise from: CKM Unitarity violations. 1 2 New Physics at tree level decays. (¯ db )(¯ ττ ) operators. 3 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 15 / 23
b ¯ � � d (¯ ττ ) Operators The contributions from NP on ∆Γ d can be estimated by analyzing effective operators well suppressed in the SM. Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 16 / 23
b ¯ � � d (¯ ττ ) Operators The contributions from NP on ∆Γ d can be estimated by analyzing effective operators well suppressed in the SM. The set of operators relevant to our study has the form (¯ db )(¯ ττ ). Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 16 / 23
b ¯ � � d (¯ ττ ) Operators The contributions from NP on ∆Γ d can be estimated by analyzing effective operators well suppressed in the SM. The set of operators relevant to our study has the form (¯ db )(¯ ττ ). b d τ ¯ ¯ d b τ ¯ Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 16 / 23
b ¯ � � d (¯ ττ ) Operators The contributions from NP on ∆Γ d can be estimated by analyzing effective operators well suppressed in the SM. The set of operators relevant to our study has the form (¯ db )(¯ ττ ). b d τ ¯ ¯ d b τ ¯ � ¯ � = (¯ τ P B τ ) , Q S , AB d P A b � ¯ d γ µ P A b � = (¯ τ γ µ P B τ ) , Q V , AB � ¯ d σ µν P A b � = (¯ τ σ µν P A τ ) , Q T , A Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 16 / 23
b ¯ � � d (¯ ττ ) Operators The contributions from NP on ∆Γ d can be estimated by analyzing effective operators well suppressed in the SM. The set of operators relevant to our study has the form (¯ db )(¯ ττ ). b d τ ¯ ¯ d b τ ¯ � ¯ � = (¯ τ P B τ ) , Q S , AB d P A b � ¯ d γ µ P A b � = (¯ τ γ µ P B τ ) , Q V , AB � ¯ d σ µν P A b � = (¯ τ σ µν P A τ ) , Q T , A The effective Hamiltonian involving these operators is H eff = − 4 G F λ d � √ C i , j ( µ ) Q i , j t 2 i , j Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 16 / 23
b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23
b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23
b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds B d → τ + τ − = ⇒ Br ( B d → τ + τ − ) < 4 . 1 × 10 − 3 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23
b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds B d → τ + τ − = ⇒ Br ( B d → τ + τ − ) < 4 . 1 × 10 − 3 B → X d τ + τ − and B + → π + τ + τ − Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23
b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds B d → τ + τ − = ⇒ Br ( B d → τ + τ − ) < 4 . 1 × 10 − 3 B → X d τ + τ − and B + → π + τ + τ − � τ Bs � τ Bs � � τ Bd − 1 vs τ Bd − 1 = ⇒ Br ( B d → X ) < 1 . 5% SM exp Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23
b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds B d → τ + τ − = ⇒ Br ( B d → τ + τ − ) < 4 . 1 × 10 − 3 B → X d τ + τ − and B + → π + τ + τ − � τ Bs � τ Bs � � τ Bd − 1 vs τ Bd − 1 = ⇒ Br ( B d → X ) < 1 . 5% SM exp Indirect Bounds Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23
b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds B d → τ + τ − = ⇒ Br ( B d → τ + τ − ) < 4 . 1 × 10 − 3 B → X d τ + τ − and B + → π + τ + τ − � τ Bs � τ Bs � � τ Bd − 1 vs τ Bd − 1 = ⇒ Br ( B d → X ) < 1 . 5% SM exp Indirect Bounds B + → π + µ + µ − = ⇒ Br ( B + → π + µ + µ − ) Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23
b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds B d → τ + τ − = ⇒ Br ( B d → τ + τ − ) < 4 . 1 × 10 − 3 B → X d τ + τ − and B + → π + τ + τ − � τ Bs � τ Bs � � τ Bd − 1 vs τ Bd − 1 = ⇒ Br ( B d → X ) < 1 . 5% SM exp Indirect Bounds B + → π + µ + µ − = ⇒ Br ( B + → π + µ + µ − ) e 2 � ¯ d γ µ P L b � � ¯ ℓ γ µ ℓ � Q 9 = , (4 π ) 2 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23
b ¯ � � d (¯ ττ ) Operators Example: Vector contribution Q V , AB = � ¯ d γ µ P A b � (¯ τ γ µ P B τ ) Direct Bounds B d → τ + τ − = ⇒ Br ( B d → τ + τ − ) < 4 . 1 × 10 − 3 B → X d τ + τ − and B + → π + τ + τ − � τ Bs � τ Bs � � τ Bd − 1 vs τ Bd − 1 = ⇒ Br ( B d → X ) < 1 . 5% SM exp Indirect Bounds B + → π + µ + µ − = ⇒ Br ( B + → π + µ + µ − ) e 2 � ¯ d γ µ P L b � � ¯ ℓ γ µ ℓ � Q 9 = , (4 π ) 2 0 . 1 − 0 . 2 η − 1 � � � � C 9 , A ( m b ) = C V , AL (Λ) + C V , AR (Λ) 6 Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 17 / 23
b ¯ � � d (¯ ττ ) Operators Γ d , SM ˜ Γ d = ∆ d 12 12 ∆Γ d | ˜ ≤ ∆ d | ∆Γ SM d Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 18 / 23
b ¯ � � d (¯ ττ ) Operators Γ d , SM ˜ Γ d = ∆ d 12 12 ∆Γ d | ˜ ≤ ∆ d | ∆Γ SM d Dependence of ˜ ∆ d on the Wilson coefficients | ˜ − 0 . 08 ) | C S , AB ( m b ) | 2 ≤ 1 . 6 1 + (0 . 41 +0 . 13 ∆ d | S , AB < − 0 . 08 ) | C V , AB ( m b ) | 2 ≤ 3 . 7 | ˜ 1 + (0 . 42 +0 . 13 ∆ d | V , AB < − 0 . 74 ) | C T , A ( m b ) | 2 ≤ 1 . 2 | ˜ 1 + (3 . 81 +1 . 21 ∆ d | T , AB < Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 18 / 23
b ¯ � � d (¯ ττ ) Operators Γ d , SM ˜ Γ d = ∆ d 12 12 ∆Γ d | ˜ ≤ ∆ d | ∆Γ SM d Dependence of ˜ ∆ d on the Wilson coefficients | ˜ − 0 . 08 ) | C S , AB ( m b ) | 2 ≤ 1 . 6 1 + (0 . 41 +0 . 13 ∆ d | S , AB < − 0 . 08 ) | C V , AB ( m b ) | 2 ≤ 3 . 7 | ˜ 1 + (0 . 42 +0 . 13 ∆ d | V , AB < − 0 . 74 ) | C T , A ( m b ) | 2 ≤ 1 . 2 | ˜ 1 + (3 . 81 +1 . 21 ∆ d | T , AB < Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 18 / 23
b ¯ � � d (¯ ττ ) operators � B → π + τ + τ − � Expected values for Br and � B → X d τ + τ − � � B d → τ + τ − � Br in order to compete against Br 10 B d � Τ � Τ � B � X d Τ � Τ � 7 B � � Π � Τ � Τ � 5 SM � V 4 � �� d � �� d 3 2 Allowed region from B d � Τ � Τ � 1 2. � 10 � 6 0.00001 0.0001 0.001 0.01 Br | ˜ ⇒ Br ( B → X d τ + τ − ) ≤ 2 . 6 × 10 − 3 ∆ d | V , AB ≤ 3 . 7 = Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 19 / 23
Like-sign dimuon asymmetry Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23
Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23
Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23
Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23
Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23
Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23
Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl ∆Γ d ∆Γ s Borissov and Hoeneisen A CP ∝ C d a d sl + C s a s sl + C Γ d + C Γ s Γ s Phys. Rev. D 87, 074020 Γ d Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23
Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl ∆Γ d ∆Γ s Borissov and Hoeneisen A CP ∝ C d a d sl + C s a s sl + C Γ d + C Γ s Γ s Phys. Rev. D 87, 074020 Γ d CP violation in mixing Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23
Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl ∆Γ d ∆Γ s Borissov and Hoeneisen A CP ∝ C d a d sl + C s a s sl + C Γ d + C Γ s Γ s Phys. Rev. D 87, 074020 Γ d CP violation in mixing+ Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23
Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl ∆Γ d ∆Γ s Borissov and Hoeneisen A CP ∝ C d a d sl + C s a s sl + C Γ d + C Γ s Γ s Phys. Rev. D 87, 074020 Γ d CP violation in mixing+CP violation in interference between mixing and decay. Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23
Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl ∆Γ d ∆Γ s Borissov and Hoeneisen A CP ∝ C d a d sl + C s a s sl + C Γ d + C Γ s Γ s Phys. Rev. D 87, 074020 Γ d CP violation in mixing+CP violation in interference between mixing and decay. ∆Γ d a d sl = ( − 0 . 62 ± 0 . 43)% a s sl = ( − 0 . 82 ± 0 . 99)% = (0 . 50 ± 1 . 38)%D0 (2014) Γ d Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23
Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl ∆Γ d ∆Γ s Borissov and Hoeneisen A CP ∝ C d a d sl + C s a s sl + C Γ d + C Γ s Γ s Phys. Rev. D 87, 074020 Γ d CP violation in mixing+CP violation in interference between mixing and decay. ∆Γ d a d sl = ( − 0 . 62 ± 0 . 43)% a s sl = ( − 0 . 82 ± 0 . 99)% = (0 . 50 ± 1 . 38)%D0 (2014) Γ d Phys. Rev. D 89, 012002 (2014) Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23
Like-sign dimuon asymmetry N ++ − N −− = A N ++ + N −− N ++ / −− : # of events with two +/- muons from B hadron decays A = A CP + A bkg CP violation in mixing A CP ∝ A b sl = C d a d sl + C s a s Standard interpretation: sl A b , D 0 = ( − 0 . 787 ± 0 . 172 ± 0 . 093)%(2011) 3.9 σ deviation from the SM sl ∆Γ d ∆Γ s Borissov and Hoeneisen A CP ∝ C d a d sl + C s a s sl + C Γ d + C Γ s Γ s Phys. Rev. D 87, 074020 Γ d CP violation in mixing+CP violation in interference between mixing and decay. ∆Γ d a d sl = ( − 0 . 62 ± 0 . 43)% a s sl = ( − 0 . 82 ± 0 . 99)% = (0 . 50 ± 1 . 38)%D0 (2014) Γ d Phys. Rev. D 89, 012002 (2014) 3.0 σ deviation from the SM Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 20 / 23
Conclusions We have investigated the room for New Physics in ∆Γ d Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 21 / 23
Conclusions We have investigated the room for New Physics in ∆Γ d A priori a large enhancement in ∆Γ d in contrast for ∆Γ s BSM effects cannot exceed the size of the hadronic uncertainties. Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 21 / 23
Conclusions We have investigated the room for New Physics in ∆Γ d A priori a large enhancement in ∆Γ d in contrast for ∆Γ s BSM effects cannot exceed the size of the hadronic uncertainties. 4 CKM unitarity violations. ∆Γ 16 Current-current operators. ≤ ∆Γ SM 3 . 7 ( bd )( ττ ) operators. Gilberto Tetlalmatzi (IPPP Durham) New Physics in ∆Γ d October 31, 2014 21 / 23
Recommend
More recommend