Constraints on CP-Violating Yukawa Couplings from EDMs Joachim Brod & Emmanuel Stamou Workshop “Testing CP-Violation for Baryogenesis” Amherst Center for Fundamental Interactions March 30, 2018 With Ulrich Haisch, Jure Zupan – JHEP 1311 (2013) 180 [arXiv:1310.1385] With Wolfgang Altmannshofer, Martin Schmaltz – JHEP 1505 (2015) 125 [arXiv:1503.04830] With Dimitrios Skodras – work in progress Joachim Brod (TU Dortmund) Higgs CPV from EDMs 1 / 24
Motivation – Electroweak Baryogenesis ������ ������ ������ ������ χ L χ R ������ ������ + ������ ������ Baryogenesis fails within the SM ������ ������ ������ ������ CP ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ Need strong first-order phase transition ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ χ L ������ ������ ������ ������ ������ ������ Need more CP violation ������ ������ Sphaleron ������ ������ Sphaleron ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ B A minimal setup for electroweak ������ ������ ������ ������ ������ ������ ������ ������ ������ ������ baryogenesis: <φ> = 0 ������ ������ <φ> = 0 ������ ������ Bubble Wall [Huber, Pospelov, Ritz, hep-ph/0610003] [Image credit: Morrissey et al., 1206.2942] L = 1 Λ 2 ( H † H ) 3 + Z t Λ 2 ( H † H ) ¯ Q 3 H c t R Λ ∼ 500 − 800 GeV gives correct baryon-to-photon ratio η b In principle, there are more operators [E.g., de Vries et al. 1710.04061] Joachim Brod (TU Dortmund) Higgs CPV from EDMs 2 / 24
Outline EDM overview EDM constraints on CP-violating Higgs couplings Top Yukawa Light-fermion Yukawas Bottom & charm Yukawa → second half Joachim Brod (TU Dortmund) Higgs CPV from EDMs 3 / 24
EDM Overview Joachim Brod (TU Dortmund) Higgs CPV from EDMs 4 / 24
Sources of CP violation QCD is CP invariant. . . . . . apart from possible θ term ∝ ǫ µναβ G µν G αβ Neglect for the purpose of this talk Microscopic origin of CP violation: Weak interactions New Physics ∼ 10 − 32 e cm E.g. neutron EDM: SM contribution is tiny, d SM n [Khriplovich & Zhitnitsky, PLB 109 (1982) 490] Joachim Brod (TU Dortmund) Higgs CPV from EDMs 5 / 24
EDM experiments, bounds Measure different EDMs Elementary: neutron, proton, deuteron Atomic: mercury, radium, xenon Molecular: ThO (mainly electron) Current bounds and prospects: [Hewett et al., 1205.2671; Baker et al., hep-ex/0602020; [ACME 2013]; Graner et al. 1601.04339] d e [ e cm] d n [ e cm] d p , D [ e cm] 8 . 7 × 10 − 29 2 . 9 × 10 − 26 current – 5 . 0 × 10 − 30 1 . 0 × 10 − 28 1 . 0 × 10 − 29 expected d Hg d Xe d Ra 7 . 4 × 10 − 30 5 . 5 × 10 − 27 4 . 2 × 10 − 22 current 5 . 0 × 10 − 29 1 . 0 × 10 − 27 expected – Joachim Brod (TU Dortmund) Higgs CPV from EDMs 6 / 24
Low-energy operators At low scales, three types of operators contribute: γ q σ µν γ 5 qF µν qEDM: ¯ q σ µν T a γ 5 qG a qCEDM: ¯ µν q Weinberg: f abc ǫ µναβ G a αβ G b µρ G c ,ρ ν g Hadronic matrix elements: qEDM → lattice q [Battacharya et al., 1506.04196, 1506.06411] g qCEDM: ChPT and NDA [E.g. Pospelov & Ritz, hep-ph/0504231] g g Weinberg: No systematic calculation exists, even sign unknown [NDA: Weinberg PRL 63 (1989) 2333, Sum rules: Demir et al. hep-ph/0208257] Joachim Brod (TU Dortmund) Higgs CPV from EDMs 7 / 24
Connection to Higgs Joachim Brod (TU Dortmund) Higgs CPV from EDMs 8 / 24
MJRM Formula of Merit Joachim Brod (TU Dortmund) Higgs CPV from EDMs 9 / 24
MJRM Formula of Merit We will look at modification Y = − y f κ f ¯ L ′ √ f (cos φ f + i γ 5 sin φ f ) f h 2 Motivated by higher dimension operators − λ ′ − λ Λ 2 | H | 2 ¯ Λ 2 | H | 2 ¯ Q L ˜ Q L Hd R , Hu R In the SM, κ f = 1 and φ f = 0 Joachim Brod (TU Dortmund) Higgs CPV from EDMs 9 / 24
MJRM Formula of Merit We will look at modification Y = − y f κ f ¯ L ′ √ f (cos φ f + i γ 5 sin φ f ) f h 2 Motivated by higher dimension operators − λ ′ − λ Λ 2 | H | 2 ¯ Λ 2 | H | 2 ¯ Q L ˜ Q L Hd R , Hu R In the SM, κ f = 1 and φ f = 0 Joachim Brod (TU Dortmund) Higgs CPV from EDMs 9 / 24
MJRM Formula of Merit We will look at modification Y = − y f κ f ¯ L ′ √ f (cos φ f + i γ 5 sin φ f ) f h 2 Motivated by higher dimension operators − λ ′ − λ Λ 2 | H | 2 ¯ Λ 2 | H | 2 ¯ Q L ˜ Q L Hd R , Hu R In the SM, κ f = 1 and φ f = 0 Joachim Brod (TU Dortmund) Higgs CPV from EDMs 9 / 24
Top Yukawa Joachim Brod (TU Dortmund) Higgs CPV from EDMs 10 / 24
Electron EDM – Barr-Zee contributions γ t γ h e “Barr-Zee” diagrams induce electron EDM [Weinberg PRL 63 (1989) 2333, Barr & Zee PRL 65 (1990) 21] | d e / e | < 8 . 7 × 10 − 29 cm (90% CL) [ACME 2013] ⇒ κ t | sin φ t | < 0 . 01 Constraint on φ t vanishes if the Higgs does not couple to the electron Joachim Brod (TU Dortmund) Higgs CPV from EDMs 11 / 24
Neutron EDM – The Weinberg Operator g γ γ h t t γ γ g t h h g q q Barr-Zee diagrams similar as in electron case Contribution of the Weinberg Operator: Higgs couples only to top quark Get constraint even if couplings to light quarks vanish Joachim Brod (TU Dortmund) Higgs CPV from EDMs 12 / 24
Neutron EDM – RG running g g γ ⇒ ⇒ q q h g g g t g g q q Operator mixing: µ d d µ C ( µ ) = γ T C ( µ ) 32 0 0 3 γ = α s 32 28 0 3 3 4 π 14 + 4 N f 0 − 6 3 Hadronic matrix element are evaluated at µ H ∼ 1 GeV QCD sum rules (large O (1) uncertainties!) [Pospelov, Ritz, hep-ph/0504231] Joachim Brod (TU Dortmund) Higgs CPV from EDMs 13 / 24
Neutron EDM – Constraints on top Yukawa d n � − 4 . 2 sin φ t + 4 . 8 · 10 − 2 κ t sin φ t cos φ t e = κ t ± (50 ± 40) 1 . 9 · 10 − 2 κ t sin φ t cos φ t � · 10 − 25 cm . Terms ∝ cos φ t subdominant, but proportional only to top Yukawa | d n / e | < 2 . 9 × 10 − 26 cm (90% CL) [Baker et al., hep-ex/0602020] | sin φ t | � 0 . 1 (0 . 06) – SM couplings to light quarks | sin φ t | � 0 . 3 (0 . 3) – only coupling to top quark Joachim Brod (TU Dortmund) Higgs CPV from EDMs 14 / 24
Other low-energy constraints s b h No effects in dim. six operators t t s b s b O (100) effects allowed by data h γ t b µ + t h O (100) effects allowed by data ¯ B s W t µ − s Joachim Brod (TU Dortmund) Higgs CPV from EDMs 15 / 24
Connection to SM EFT Joachim Brod (TU Dortmund) Higgs CPV from EDMs 16 / 24
Top-Higgs Sector in the SM EFT Five chirality flipping operators at dim. 6 without FCNC: [Cirigliano, Dekens, Mereghetti, de Vries, 1603.03049, 1605.04311] | H | 2 ¯ Q L ˜ Ht R , Q L ˜ ¯ H σ µν T a t R G a µν , Q L ˜ ¯ H σ µν t R B µν , Q L ˜ ¯ H σ µν τ a t R W a µν , ¯ Q L H σ µν τ a b R W a µν Joachim Brod (TU Dortmund) Higgs CPV from EDMs 17 / 24
| H | 2 ¯ Q L ˜ Ht R – Barr-Zee & Weinberg γ g H h ⇒ t t R Q L γ h g t g q Joachim Brod (TU Dortmund) Higgs CPV from EDMs 18 / 24
¯ Q L H σ µν τ a b R W a µν – Flavor H W W a H ⇒ s b t t R Q L A CP ( b → s γ ) = 0 . 015 ± 0 . 02 [HFAG] v 2 C Wt ∼ = 0 . 1 [1605.04311] Joachim Brod (TU Dortmund) Higgs CPV from EDMs 19 / 24
¯ Q L H σ µν τ a b R W a µν – EDMs H W W a H ⇒ t d d t R Q L Suppressed by | V td | 2 ∼ 6 . 7 × 10 − 5 W t R Q L Q L W a H H H t R ⇒ W ⇒ Q L t R Q L t R Q L t R Q L Gives stronger bound than direct insertion by factor 10 3 v 2 C Wt ∼ = 0 . 001 [Cirigliano, Dekens, Mereghetti, de Vries, 1605.04311] Joachim Brod (TU Dortmund) Higgs CPV from EDMs 20 / 24
Light-Fermion Yukawas Joachim Brod (TU Dortmund) Higgs CPV from EDMs 21 / 24
γ t h γ, Z e e e Joachim Brod (TU Dortmund) Higgs CPV from EDMs 22 / 24
γ t h γ, Z e e e Joachim Brod (TU Dortmund) Higgs CPV from EDMs 22 / 24
γ W h γ, Z e e e Joachim Brod (TU Dortmund) Higgs CPV from EDMs 22 / 24
Light fermions: electron γ γ γ t W h W h γ, Z h γ, Z W e e ν e e e e e e e e . . . + 117 more two-loop diagrams Complete analytic result [Altmannshofer, Brod, Schmaltz, 1503.04830] See also [Czarnecki & Gribouk hep-ph/0509205] Electron EDM: | d e / e | < 8 . 7 × 10 − 29 cm (90% CL) [ACME 2013] . . . leads to | sin φ e | < 0 . 017 Joachim Brod (TU Dortmund) Higgs CPV from EDMs 23 / 24
Recommend
More recommend