constraining higgs cp properties in
play

CONSTRAINING HIGGS CP - PROPERTIES IN GLUON FUSION Matthew Dolan - PowerPoint PPT Presentation

CONSTRAINING HIGGS CP - PROPERTIES IN GLUON FUSION Matthew Dolan SLAC and University of Melbourne 1406.3322 with P . Harris, M. Jankowiak and M. Spannowsky Introduction Run I showed the Higgs boson is broadly SM-like How can we


  1. CONSTRAINING HIGGS CP - PROPERTIES IN GLUON FUSION Matthew Dolan SLAC and University of Melbourne 1406.3322 with P . Harris, M. Jankowiak and M. Spannowsky

  2. Introduction • Run I showed the Higgs boson is broadly SM-like • How can we constrain the CP-properties of the Higgs?

  3. Introduction • Higgs an even eigenstate of CP in the SM • Many BSM theories include CP-odd scalars (pseudoscalars) • Or have CP-violation in the Higgs sector • Physical Higgs then not an eigenstate of CP Don’t ask ‘is the Higgs CP-even or odd’ but ‘how much’?

  4. • Traditional analyses rely on angular correlations between decay products in X ! ZZ ! 4 ` Higgs-like state X θ 1 p j 1 Φ 1 p d φ e Q θ µ µ − V 1 µ − ( � e + X j β ˆ θ ` e z � ∆ φ Z Z V 2 θ � j α µ + θ h µ + e − θ e Φ ˆ e z Q ∆ φ j 2 ( � ) p θ � θ 2 p Or in correlations between tagging jets and decay products in weak boson fusion (WBF) From Englert et al, 1212.0840

  5. Pseudoscalars do not have renormalisable couplings to massive vector bosons 0.6 0.6 0.6 1 d Γ 1 d σ 1 d σ + 0 Γ d ∆φ σ d ∆φ σ d ∆φ jj D5 0.4 0.4 0.4 - 0 D5 - 0 + D5 0 + SM - 0 0 SM D5 + 0.2 0.2 0.2 2 + + 0 0 + + + D5 2 SM 2 0 D5 0 0 0 0 2 4 6 0 2 4 6 0 2 4 6 Leading order scalar couplings are d=3 e hV µ V µ Leading order pseudoscalar couplings are d=5 e hV µ ν e V µ ν ecays and From Englert et al, 1212.0840

  6. Results from ATLAS-CONF-2015-008 f 1 ( µ W − µ g L V 2 g H Z Z Z µ Z µ + g HWW W + c α  SM 0 = Sets constraints on f Z µ ν g − 1 1 c α  H Z Z Z µ ν Z µ ν + s α  AZ Z Z µ ν ˜ 4 Λ f W − µ ν g) − 1 1 µ ν W − µ ν + s α  AWW W + µ ν ˜ c α  HWW W + X 0 . 2 Λ mixing angles and higher dimension s α = sin α , c α = cos α operators suppressed by scale Λ Tree-level SM is κ SM = 1 , c α = 1 , Λ → ∞

  7. How large should CP-violating effects be? 1 α Naive expectation: Λ ∼ 2 π v κ SM ∼ 1 , κ AV V ∼ 1 κ AV V = 1 Λ κ AV V ∼ α v 8 π ∼ 10 − 3 ˜ 4 κ AV V / κ SM ) tan α ∼ 10 − 3 tan α (˜ Coupling ratio Best fit value 95% CL Exclusion Regions Combined Expected Observed Expected Observed  HVV /  SM ˜ 0 . 0 − 0 . 48 ( −∞ , − 0 . 55] S [4 . 80 , ∞ ) ( −∞ , − 0 . 73] S [0 . 63 , ∞ ) ( ˜  AVV /  SM ) · tan ↵ 0 . 0 − 0 . 68 ( −∞ , − 2 . 33] S [2 . 30 , ∞ ) ( −∞ , − 2 . 18] S [0 . 83 , ∞ )

  8. Information in Higgs production too BR ( h → ZZ ∗ ) and WBF negligible for a pure CP-odd state Gluon fusion increases by a factor ~9/4 Signal strength info rules out pure pseudoscalar at 4 σ 3.0 � 2.5 2.0 1.5 1 α < 0 . 76 (95% C.L.) 1.5 x u 0.5 1.0 1.5 1 0.5 0.5 Freitas, Schwaller 1211.1980 0.0 � 0.0 0.5 1.0 1.5 Djouadi, Moreau 1303.6591 Α

  9. What Other Couplings Can Be Probed? • Scalar and pseudoscalar couplings to fermions and massless vector bosons arise at the same order Tree-level couplings to fermions f γ 5 f h ¯ h ¯ ff 1-loop couplings to gluons/photons d hG µ ν e g hG µ ν G µ ν G µ ν , r

  10. What Other Couplings Can Be Probed? Will focus on CP-sensitive variables in Higgs production • • Production via gluon fusion arises at same order in both cases H H H (a) (c) (b) For decay see Felix and Marco’s talks

  11. What Other Couplings Can Be Probed? Will focus on CP-sensitive variables in Higgs production • WBF amenable to angular analysis • Gauge-Higgs invariant mass in associated production • θ 1 LHC8 12000 + 0 j 1 - 0 10000 d + 2 Q V 1 Arbitrary Units ( � 8000 ∆ φ 6000 V 2 θ � 4000 Q j 2 ( � ) 2000 θ 2 0 500 1000 1500 2000 2500 M VX For decays see Felix and Marco’s talks Ellis, Sanz, You 1208.6002

  12. What Other Couplings Can Be Probed? • Higgs plus two jet production is known to be sensitive to the Higgs CP properties through angular correlations in the jets • In particular differences between azimuthal angles ∆ φ jj -3 10 × 45 jj Φ pp jj H CP-even → ∆ /d m = 160 GeV CP-odd H σ 40 d CP-mixed σ 1/ 35 30 25 20 15 10 -150 -100 -50 0 50 100 150 ∆ Φ jj Klamke, Zeppenfeld ’07

  13. We will consider a mixed CP-state with couplings ff = cos ↵ y f ¯ y f ¯ f f h + sin ↵ e f i � 5 f h . L h ¯ L hV V ⊃ cos α 2 m 2 hW µ W µ + cos α 2 m 2 W Z hZ µ Z µ v v This generates couplings to gluons L hgg = cos ↵ ↵ S µ ν G a,µ ν + sin ↵ ↵ S µ ν e 12 ⇡ v hG a 4 ⇡ v hG a G a,µ ν Mixing parametrised by angle α is pure CP-even α = 0 is pure CP-odd α = π / 2

  14. Event Generation We generate signal using VBFNLO 2.6.3 at 8 and 14 TeV Gluon fusion generated at NLO WBF generated at LO Background using Sherpa 2.0.0 Generate Zjj (QCD + EW), W+jets and t ¯ t QCD multijets assumed to be flat across phase-space

  15. Cross-Sections In the CP-odd limit the WBF cross-section vanishes at tree-level The CP-odd GF cross-section is larger than the CP-even case by 9/4 8 TeV GF cross-section (fb) 8 TeV WBF cross-section (fb) 14 TeV GF cross-section (fb) 14 TeV WBF cross-section (fb) α 0.00 250 467 1141 1481 0.30 278 426 1268 1351 0.60 352 318 1606 1009 0.90 447 181 2038 572 1.20 529 61 2411 194 We focus on h → ττ

  16. Event Selection We consider four different final states: di-hadronic, semi-leptonic and leptonic (e+mu) Cuts designed to mimic ATLAS/CMS di-tau analyses µ τ h e τ h eµ τ h τ h p µ p e p lead T > 20 GeV T > 25 GeV > 20 GeV T lepton selection T > 45 GeV p τ p trail T > 30 GeV T > 30 GeV > 10 GeV p τ p τ T m µ kinematic selection p H m e T < 30 GeV b-tag veto with p b T > 100 GeV T < 30 GeV T > 20 GeV loose jet selection m jj > 500 GeV m jj > 500 GeV m jj > 500 GeV m jj > 500 GeV | ∆ η jj | > 3.5 | ∆ η jj | > 3.5 | ∆ η jj | > 3.5 | ∆ η jj | > 3.5 m jj > 700 GeV m jj > 700 GeV m jj > 700 GeV tight jet selection | ∆ η jj | > 4 . 5 | ∆ η jj | > 4.5 | ∆ η jj | > 4.5 p H p H p H T > 100 GeV T > 100 GeV T > 100 GeV CMS: 1401.5041 ATLAS-CONF-2013-108 updated to 1501.04943

  17. Kinematic Distributions 1 GeV) rad) Bkgs Bkgs 0.9 Higgs(WBF) -1 Higgs(WBF) (0.1 -1 0.8 (100 ggH+2j ( = 0.0) α ggH+2j ( = 0.0) α 1 jj φ 0.7 ggH+2j ( = 0.6) ggH+2j ( = 0.6) α α ∆ jj /d /dm ggH+2j ( = 1.2) ggH+2j ( = 1.2) α α 0.6 σ d σ -1 d 0.5 σ -1 σ 0.4 -1 10 0.3 0.2 0.1 -2 0 10 500 1000 1500 2000 2500 3000 -3 -2 -1 0 1 2 3 (rad) m (GeV) ∆ φ jj jj 5 | |/2) jj η Bkgs /d| Bkgs 4.5 jj φ σ ∆ d /dsin(| 4 Higgs(WBF) -1 Higgs(WBF) σ 3.5 ggH+2j ( = 0.0) ggH+2j ( = 0.0) α α σ d 3 -1 1 ggH+2j ( = 0.6) σ α ggH+2j ( = 0.6) α 2.5 ggH+2j ( = 1.2) α ggH+2j ( = 1.2) α 2 1.5 1 0.5 -1 10 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.510 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 η sin(| |/2) ∆ φ jj jj Most sensitive variable is ∆ φ jj = φ y> 0 − φ y< 0

  18. is pretty optimal ∆ φ jj = φ y> 0 − φ y< 0 Trained a BDT to discriminate between two gluon fusion samples with and α = 0 α = 1 . 2 Signal Efficiency Signal Efficiency 1 1 0.8 0.8 0.6 0.6 (bdt) α (bdt) α 1.5 1.5 (sin(| |)) α ∆ φ (sin(| |)) α ∆ φ 0.4 0.4 1.5 jj 1.5 jj (bdt) α (bdt) α 0.6 0.2 0.6 0.2 (sin(| |)) (sin(| |)) α ∆ φ α ∆ φ 0.6 0.6 jj jj 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Background Efficiency Background Efficiency 8 TeV 14 TeV

  19. Also trained a BDT to discriminate between GF+WBF signal and sum of backgrounds A category-based analysis using only m ττ , ∆ φ jj , m jj , ∆ η jj does about as well as the BDT trained on full set of variables 2 GeV) Bkgs 1.8 -1 1.6 (20 Higgs(VBF) 1.4 T ggH+2j ( = 0.0) /dp α 1.2 σ d ggH+2j ( = 0.6) α -1 1 σ ggH+2j ( = 1.2) α 0.8 0.6 0.4 0.2 0 0 50 100 150 200 250 300 350 400 p leading Jet (GeV) T

  20. Constraints 5 Significance Significance m and sin(| /2|) loose( ) ∆ φ α m and sin(| /2|) loose( ) ∆ φ α τ τ τ τ jj jj m and sin(| /2|) tight( ) -1 ∆ φ α m and sin(| /2|) tight( ) ∆ φ α 4.5 14 50 fb 14 TeV -1 τ τ 20 fb 8 TeV τ τ jj jj mva and sin(| /2|) tight( ) ∆ φ α mva and sin(| /2|) tight( ) ∆ φ α jj jj m and sin(| /2|) loose ∆ φ m and sin(| /2|) loose ∆ φ 4 τ τ τ τ jj 12 jj m and sin(| /2|) tight ∆ φ m and sin(| /2|) tight ∆ φ τ τ τ τ jj jj mva vs sin(| /2|) tight ∆ φ mva vs sin(| /2|) tight 3.5 ∆ φ jj jj 10 m loose m loose τ τ τ τ 3 m tight m tight τ τ τ τ 8 2.5 2 6 1.5 4 1 2 0.5 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 α α Dashed: Significance of total signal over SM background Solid: Exclusion significance relative to case α = 0 with 50/fb at 14 TeV α ≤ 0 . 7

  21. Constraints ) -1 Exclusion (fb m and Loose ∆ φ τ τ 3 10 m and Tight ∆ φ τ τ MVA and Tight ∆ φ 2 10 σ 2 10 1 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 α Expected exclusion limit as a function of integrated luminosity at 14 TeV

Recommend


More recommend