法による Constrained HFB + Local QRPA 法による Constrained HFB + Local QRPA 大振幅集団運動の記述 大振幅集団運動の記述 佐藤 弘一 ( 京大理 / 理研 ) 日野原 伸生 ( 理研 ) 中務 孝 ( 理研 ) 松尾 正之 ( 新潟理 ) 松柳 研一 ( 理研 / 京大基研 )
Introduction Formulation ASCC 法の 2 次元への拡張 Constrained HFB+Local QRPA Application Oblate-Prolate Shape coexistence in Se &Kr Summary Hinohara et al., arXiv:1004.5544 KS & Hinohara., arXiv:1006.3694
68 Se 日野原さんのトーク: (1+3) 次元の ASCC 法 Application to shape coexistence in Se and Kr N. Hinohara, et al, Prog. Theor. Phys. 119(2008), 59; PRC 80 (2009),014305. (2+3) 次元への ASCC 法の拡張 ・ 2 次元集団多様体の抽出 & 古典的集団 Hamiltonian の決定 ・集団 Hamitonian を再量子化し集団 Schrödinger 方程式を解く q 2 q 1 5D quadrupole collective Hamiltonian (Generalized Bohr-Mottelson Hamiltonian) : H T T V ( , ) collective potential vib rot 1 1 2 2 T D ( , ) D ( , ) D ( , ) vib 2 2 vibrational inertial masses 3 1 2 J T rot k k 2 rotational moments of inertia k 1
Adiabatic Self-consistent Collective Coordinate (ASCC)Method Matsuo, Nakatsukasa, and Matsuyanagi, PTP 103(2000), 959. Adiabatic approx. to SCC method T. Marumori, T. Maskawa, F. Sakata and A. Kuriyama, PTP 64 (1980), 1294. One can extract the collective degree(s) of freedom the system itself chooses Time-dep. variational principle ( , , , N ) i H ( , , , N ) 0 q p q p t Adiabatic expansion ASCC Basic Equations ASCC Basic Equations By courtesy of Hinohara-san
ASCC Basic Equations ASCC Basic Equations (from 0-th order in p) Moving-frame HFB equation moving-frame Hamiltonian Not included in HFB Local harmonic equations (moving-frame QRPA equations) (from 1st-order in p) Not included in QRPA (from 2nd-order in p)
ASCC Basic Equations ASCC Basic Equations Collective Hamiltonian Canonical variable conditions ˆ ˆ ( ) ( ), N ( ) i q q q HFB 平衡点での moving-frame QRPA 方程式 ( ) ~ ( ) 0 N Gauge-fixing q i Hinohara et al., PTP117(2007) 451. 通常の QRPA 方程式
Requantization Requantization Classical kinetic energy: 1 2 T g q q ( q i 1 , 2 , 3 ) :3 Euler angles i i + :2 deformation q q Pauli’s prescription 4 5 parameters Quantized kinetic energy: 5D Hamiltonian 2 1 ˆ 1 T G G 2 q q G Laplacean in a curved space
TDHFB phase space Mapping onto the ( β , γ ) plane 2-dimensional q 2 Collective manifold q x 1 sin x sin 正しい境界条件の下、集団 Schrödinger eq. を解くため、 ( β、γ ) 平面への写像を考える
Classical Quadrupole Collective Hamiltonian: Pauli’s prescription General Bohr-Mottelson Hamiltonian (5D quadrupole collective Hamiltonian):
Collective Schrodinger equation: Collective wave function: Normalization:
Derivation of vibrational masses q Vibrational part of collective Hamiltonian 2 q 1 Scale transformation B=1 collective coordinates one-to-one correspondence ( ) 2 D 2 ( ) D 0 In terms of quadrupole deformation
Vibrational energy written in terms of quadrupole defromation Collective mass can be calculated through Without numerical derivatives
最初から fully self-consistent な 2D ASCC の計算は大変なので・・・ Approximations: q 2 q Curvature terms(1D では寄与小さかった ) を落とす 1 Moving-frame Hamiltonian CHFB Hamiltonian ˆ ˆ H ( q , q ) ( q 1 q , ) ( , ) H ( , ) M 1 2 2 CHFB Constrained HFB(CHFB) equation: Local QRPA(LQRPA) equations: Constrained HFB + Local QRPA method
Constrained HFB + Local QRPA method Solve the constrained HFB eq. at each point on the ( β , γ ) plane V ( , ) ( , ) ( , ) ( , ) Solve the LQRPA eqs. on top of each CHFB state ( , ) Local Thouless-Valatin 2 ˆ ˆ ( , ) ( ) ( ) Q ( , ) P ( , ) eqs. Pick up 2 collective modes from the LQRPA modes obtained above 2 D ( , ) D ( , ) D ( , ) を最小化するペア Local QRPA mass Calculate the inertial mass functions J ( , ) D ( , ) D ( , ) D ( , ) k the contribution from the time-odd mean Diagonalize the 5D Quadrupole Hamiltonian to field included calculate the energy spectrum
How to choose the two collective modes ? Take the lowest 40 QRPA modes as candidates. 2 ( , ) 1 st . We assume that the mode with lowest-frequency squared 1 Calculate the collective mass for every pair of the candidates is collective. We regard the pair which minimizes the vibrational part of the 5DQH metric as collective : 2 nd . The other is the mode whose combination with the lowest mode minimizes the vibrational part of the 5DQH metric: Intrinsic vol. element n 2 ( , ) 2 ( , ) 2 collective 2 ( , ) Cranking formula 1 W for α =1 and α =2,3,4 ・・・
Comparison with other 5D Quadrupole Hamiltonian approaches
CHFB + LQRA 法の陽子過剰 Se 、 Kr への適用
Microscopic Hamiltonian P+QQ model: Pairing (monopole, quadrupole) + quadrupole p-h interaction Parameters ( ) G Monopole pairing & quadrupole int. 0 fitted to the pairing gaps and the quadrupole deformation obtained with Skyrme-HFB by Yamagami et al. Quadrupole pairing : self-consistent value Sakamoto et al. PLB245 (1990) 321 Model space Harmonic oscillator two major shell :Nsh=3, 4 (pf & sdg shells) The s. p. energies: calculated using the modified oscillator potential. M. Yamagami et al.,NPA 693(2001) 579.
Numerical results Collective potential Collective path The absolute min. is oblate. : absolute minimum The 2 nd lowest min. is prolate. The spherical shape is a local maximum.
68Se LQRPA rotational masses 2 2 J ( , ) 4 D k ( , ) sin 2 k 3 k D D D 2 3 1 (LQRPA) (IB) J J ( , ) / ( , ) Ratio to cranking MoI k k (LQRPA) (IB) (LQRPA) (IB) (LQRPA) (IB) J / J J / J J / J 3 3 1 1 2 2
68Se LQRPA vibrational masses 2 D ( , ) D ( , ) / D ( , ) / Ratio to cranking mass β,γに依存して 数十 % 増加
4 Collective wave functions squared for 68Se Yrast : oblate character, Yrare: prolate character : β -vibrational 0 2 , 2 3
( ) …B(E2) e 2 fm 4 Excitation Energies and B(E2) effective charge: e n =0.4, e p =1.4 centrifugal effect Reminiscent of γ -unstable situation e.g. B(E2; 6 2 -> 6 1 ) >> B(E2; 6 2 -> 4 1 ) LQRPA mass の方が cranking mass より実験とよい一致
72 Kr LQRPA moments of Inertia Extention of Thouless-Valatin MoI to non-equilibrum HFB pts. (LQRPA) (LQRPA) J J (LQRPA) J 1 2 3 2 2 J ( , ) 4 ( , ) sin 2 3 D k k k strongly dependent on ( β , γ ) Local QRPA vibrational masses:
72 Kr localization 4 for 72Kr Collective wave functions squared
EXP : Fischer et al., Phys.Rev. C67 (2003) 064318, Excitation Energies and B(E2) Bouchez, et al., Phys.Rev.Lett.90 (2003) 082502. Gade, et al., Phys.Rev.Lett. 95 (2005) 022502, 96 (2006) 189901 ( ) …B(E2) e 2 fm 4 72 Kr effective charge: e pol =0.658 The interband transitions become weaker as angular momentum increases. development of the localization of w.f. The time-odd mean-field lowers the excitation energies.
まとめ 5 次元四重極 Hamiltonian を微視的に決定する方法として、 2 次元 ASCC 法の近 似である CHFB+LQPRA 法を開発し、 Se および Kr の低励起状態に適用した CHFB+LQPRA 法によって求めた慣性質量は、平均場の time-odd 項から の寄与を含んでいる。 Cranking 質量との比較で、平均場の time-odd 項に よって、数十 % 程度の慣性質量の増大が見られた。この増大はβ、γに依 存する。 Se および Kr の計算結果は、それらの低励起状態が、理想的な変形共存とγ - unstable な状態との中間的な状況にある。それらの状態はγ方向の大振幅の shape fluctuation, β振動的な励起、回転運動の兼ね合いによって決まる 回転運動は振動波動関数の ( β , γ ) 平面での局在化の発達に重要な役割を果たす 展望 現実的な相互作用 Fully self-consistent な 2 次元 ASCC 法
Recommend
More recommend