Consequences of a XENONnT/LZ signal for the LHC and thermal dark matter production in collaboration with S. Baum, R. Catena, J. Conrad, K. Freese [arXiv:1709.06051, 1712.07969] Martin B. Krauss Partikeldagarna 2018 October 13 th , 2018 Lund
Overview � After potential DM discovery, what can we learn about DM properties? � XENONnT will start 2019 � LHC Run 3 planned start in 2020, 300 fb − 1 in 2022 � Assuming O (100) XENONnT events in 2021 (˜20 ton × year exposure) (just below current limits) � Non-relativistic EFT and simplified DM models as framework → What predictions can be made for LHC Run 3 monojet (and dijet) searches? → Is a discovery compatible with thermal production? → Using complementarity in DM searches, what can we learn about DM properties? (mass, couplings, spin,...) 1 / 15
i i Simplified models & EFT ˆ O 1 = 1 χ 1 N � � ˆ q v ⊥ ˆ O 3 = i ˆ S N · × ˆ 1 χ mN ˆ O 4 = ˆ S χ · ˆ S N � � q v ⊥ ˆ ˆ O 5 = i ˆ S χ · × ˆ 1 N mN � � � � q ˆ q ˆ ˆ O 6 = S χ · ˆ S N · ˆ mN mN ˆ v ⊥ 1 χ O 7 = ˆ S N · ˆ v ⊥ 1 N ˆ O 8 = ˆ S χ · ˆ � � q ˆ ˆ O 9 = i ˆ ˆ S χ · S N × mN ˆ q ˆ O 10 = i ˆ S N · 1 χ mN q ˆ ˆ O 11 = i ˆ S χ · 1 N mN ˆ � v ⊥ � O 12 = ˆ ˆ S χ · S N × ˆ v ⊥ � � � � q ˆ ˆ O 13 = i S χ · ˆ ˆ S N · ˆ mN � � � ˆ q v ⊥ � ˆ O 14 = i S χ · ˆ S N · ˆ ˆ mN � � �� � q ˆ v ⊥ � q ˆ ˆ O 15 = − S χ · ˆ S N × ˆ ˆ · mN mN q ˆ v ⊥ 1 N ˆ O 17 = i · S · ˆ mN q ˆ ˆ · S · ˆ O 18 = i SN mN [Fitzpatrick et al., 2012] 2 / 15
Simplified models & EFT 1 1 G′ µν G µν + m 2 GGµGµ χ / L χGq = i ¯ Dχ − mχ ¯ χχ − ˆ 4 2 O 1 = 1 χ 1 N � � λG q ˆ v ⊥ ˆ ( GµGµ )2 + i ¯ O 3 = i ˆ S N · × ˆ 1 χ q / − Dq − mq ¯ qq mN 4 ˆ O 4 = ˆ S χ · ˆ S N λ 3 � � χγµγ 5 χGµ q v ⊥ χγµχGµ − λ 4 ¯ ˆ ˆ O 5 = i ˆ − ¯ S χ · × ˆ 1 N mN 2 � � � � q q ˆ ˆ ˆ O 6 = S χ · ˆ S N · ˆ qγµq ) Gµ − h 4(¯ qγµγ 5 q ) Gµ . mN mN − h 3(¯ ˆ v ⊥ 1 χ O 7 = ˆ S N · ˆ v ⊥ 1 N ˆ O 8 = ˆ S χ · ˆ � � q ˆ ˆ O 9 = i ˆ ˆ S χ · S N × mN ˆ q ˆ O 10 = i ˆ S N · 1 χ mN q ˆ ˆ O 11 = i ˆ S χ · 1 N mN ˆ � v ⊥ � O 12 = ˆ ˆ S χ · S N × ˆ v ⊥ � � � � ˆ q ˆ O 13 = i S χ · ˆ ˆ S N · ˆ mN � � � ˆ q v ⊥ � ˆ O 14 = i S χ · ˆ S N · ˆ ˆ mN � � �� � q ˆ v ⊥ � q ˆ ˆ O 15 = − S χ · ˆ S N × ˆ ˆ · mN mN q ˆ v ⊥ 1 N ˆ O 17 = i · S · ˆ mN q ˆ ˆ · S · ˆ O 18 = i SN mN [Fitzpatrick et al., 2012] 2 / 15
Simplified models & EFT 1 1 G′ µν G µν + m 2 GGµGµ L χGq = i ¯ χ / Dχ − mχ ¯ χχ − 4 2 ˆ O 1 = 1 χ 1 N � � λG q ˆ ˆ v ⊥ ( GµGµ )2 + i ¯ O 3 = i ˆ S N · × ˆ 1 χ − q / Dq − mq ¯ qq mN 4 ˆ O 4 = ˆ S χ · ˆ S N λ 3 � � χγµχGµ − λ 4 ¯ χγµγ 5 χGµ q ˆ ˆ v ⊥ ¯ O 5 = i ˆ − S χ · × ˆ 1 N mN 2 � � � � q q ˆ ˆ ˆ O 6 = ˆ ˆ qγµq ) Gµ − h 4(¯ qγµγ 5 q ) Gµ . S χ · S N · − h 3(¯ mN mN ˆ v ⊥ 1 χ O 7 = ˆ S N · ˆ v ⊥ 1 N ˆ O 8 = ˆ S χ · ˆ � � q ↓ ˆ ˆ O 9 = i ˆ ˆ [Dent et al., 2015] S χ · S N × mN q ˆ ˆ O 10 = i ˆ S N · 1 χ mN q ˆ O 11 = i ˆ ˆ S χ · 1 N mN � v ⊥ � O 12 = ˆ ˆ ˆ S χ · S N × ˆ v ⊥ � � � � q ˆ ˆ O 13 = i S χ · ˆ ˆ S N · ˆ mN � � � ˆ q v ⊥ � ˆ O 14 = i S χ · ˆ S N · ˆ ˆ mN � � �� � q ˆ v ⊥ � q ˆ ˆ O 15 = − S χ · ˆ S N × ˆ ˆ · mN mN q ˆ v ⊥ 1 N ˆ O 17 = i · S · ˆ mN q ˆ ˆ · S · ˆ O 18 = i SN mN [Fitzpatrick et al., 2012] 2 / 15
Simplified models & EFT 1 1 G′ µν G µν + m 2 GGµGµ L χGq = i ¯ χ / Dχ − mχ ¯ χχ − 4 2 ˆ O 1 = 1 χ 1 N λG � � ( GµGµ )2 + i ¯ q ˆ v ⊥ q / Dq − mq ¯ O 3 = i ˆ ˆ − qq S N · × ˆ 1 χ mN 4 ˆ O 4 = ˆ S χ · ˆ S N λ 3 χγµχGµ − λ 4 ¯ χγµγ 5 χGµ � � − ¯ q ˆ v ⊥ ˆ O 5 = i ˆ S χ · × ˆ 1 N 2 mN � � � � ˆ qγµq ) Gµ − h 4(¯ qγµγ 5 q ) Gµ . q ˆ q ˆ ˆ ˆ − h 3(¯ O 6 = S χ · S N · mN mN v ⊥ 1 χ ˆ O 7 = ˆ S N · ˆ ˆ v ⊥ 1 N O 8 = ˆ S χ · ˆ � � q ˆ ˆ O 9 = i ˆ S χ · S N × ˆ mN ˆ q O 10 = i ˆ ˆ S N · 1 χ mN q ˆ ˆ O 11 = i ˆ S χ · 1 N mN � v ⊥ � ˆ O 12 = ˆ S χ · S N × ˆ ˆ v ⊥ � � � q ˆ � ˆ ˆ ˆ O 13 = i S χ · ˆ S N · mN � � � q ˆ ˆ v ⊥ � ˆ ˆ O 14 = i S χ · S N · ˆ mN → � � �� � q q ˆ ˆ v ⊥ � ˆ ˆ ˆ O 15 = − S χ · S N × ˆ · mN mN q ˆ ˆ v ⊥ 1 N O 17 = i · S · ˆ mN q ˆ ˆ · S · ˆ O 18 = i SN mN [Fitzpatrick et al., 2012] 2 / 15
Simplified models & EFT 1 1 G′ µν G µν + m 2 GGµGµ L χGq = i ¯ χ / Dχ − mχ ¯ χχ − 4 2 ˆ O 1 = 1 χ 1 N λG ( GµGµ )2 + i ¯ q / � � − Dq − mq ¯ qq q ˆ v ⊥ ˆ O 3 = i ˆ S N · × ˆ 1 χ 4 mN ˆ λ 3 O 4 = ˆ S χ · ˆ S N χγµχGµ − λ 4 ¯ χγµγ 5 χGµ − ¯ � � q ˆ ˆ v ⊥ O 5 = i ˆ 2 S χ · × ˆ 1 N mN qγµq ) Gµ − h 4(¯ qγµγ 5 q ) Gµ . � � � � q q ˆ − h 3(¯ ˆ ˆ O 6 = ˆ ˆ S χ · S N · mN mN ˆ v ⊥ 1 χ O 7 = ˆ S N · ˆ v ⊥ 1 N ˆ O 8 = ˆ S χ · ˆ ↓ [Dent et al., 2015] � � q ˆ ˆ O 9 = i ˆ ˆ S χ · S N × mN q ˆ ˆ O 10 = i ˆ S N · 1 χ mN q ˆ ˆ O 11 = i ˆ S χ · 1 N mN � v ⊥ � O 12 = ˆ ˆ ˆ S χ · S N × ˆ v ⊥ � � � � q ˆ ˆ O 13 = i S χ · ˆ ˆ S N · ˆ mN � � � ˆ q v ⊥ � ˆ O 14 = i S χ · ˆ S N · ˆ ˆ mN → � � �� � q ˆ v ⊥ � q ˆ ˆ O 15 = − S χ · ˆ S N × ˆ ˆ · mN mN q ˆ v ⊥ 1 N ˆ O 17 = i · S · ˆ mN q ˆ ˆ · S · ˆ O 18 = i SN mN [Fitzpatrick et al., 2012] 2 / 15
Benchmark points from direct detection Benchmark points Spin 0 DM Op. gq g DM M eff [GeV] Direct detection can only constrain 1 14564.484 h 1 g 1 1 h 3 g 4 10260.217 7 h 4 g 4 4.509 M eff ≡ 0 . 1 M med . 10 h 2 g 1 10.706 √ g q g DM Spin 1/2 DM Op. gq g DM M eff [GeV] 1 14564.484 h 1 λ 1 Assume XENONnT(/LZ) detects O (100) (S1) 1 7255.068 h 3 λ 3 4 h 4 λ 4 147.354 signal events with an exposure of 6 h 2 λ 2 0.286 ε = 20 ton × year 7 h 4 λ 3 3.188 8 h 3 λ 4 225.159 10 10.706 h 2 λ 1 → Calculate M eff for various combinations of 11 h 1 λ 2 351.589 couplings and mediators. Spin 1/2 DM Op. gq g DM M eff [GeV] 1 h 1 b 1 14564.484 1 h 3 b 5 10260.216 Operators with larger supression 4 ℜ ( b 7 ) 188.302 h 4 4 h 4 ℑ ( b 7 ) 3.215 ↓ 5 h 3 ℑ ( b 6 ) 6.946 smaller M eff 7 h 4 b 5 4.509 8 h 3 ℜ ( b 7 ) 287.728 9 h 4 ℑ ( b 6 ) 3.674 10 10.706 h 2 b 1 11 h 3 ℑ ( b 7 ) 223.794 3 / 15
Impact on LHC monojet searches g q � Translating the O (100) XENONnT DM events into regions in the M med - σ plane � Mediator necessarily couples to quarks. G µ → Can be produced in pp collisions g q g DM � Can decay into pair of DM particles ( E T miss ) � Initial state radiation (e.g., gluon) q ¯ DM → jet in detector Current Limits and projections For 12 . 9 fb − 1 integrated luminosity → monojet limit σ × A ≈ 40 fb (Event level with selection cuts). √ For projections after Run 3 we consider scaling with L and L . 4 / 15
Monojet predictions spin 0 DM Limits and projections � ˆ O 1( h 1 , g 1) —— current limit 10 2 10 2 � ˆ O 1( h 3 , g 4) - - - projected sensitivity √ 300 fb − 1 ( L ) 1 1 spin 1 2 DM —— projected sensitivity 300 fb − 1 ( L ) ˆ � O 1( h 1 , λ 1) 10 - 2 10 - 2 ˆ � O 1( h 3 , λ 3) � × A / fb ˆ � O 4( h 4 , λ 4) 10 - 4 10 - 4 ˆ � O 8( h 3 , λ 4) � ˆ O 11( h 1 , λ 2) 10 - 6 10 - 6 spin 1 DM 10 - 8 10 - 8 ˆ � O 1( h 1 , b 1) ˆ � O 1( h 3 , b 5) 10 - 10 10 - 10 2000 4000 6000 8000 10000 M med / GeV Combining spectral information from direct detection with the discovery or lack of discovery of a monojet signal at the LHC can provide important information about the nature of the DM and mediator. 5 / 15
DM thermal production DM in the early Universe in thermal equilibrium DM + DM ⇆ SM + SM . Boltzmann equation n + 3 Hn = −� σv Møl � ( n 2 − n 2 ˙ eq ) with the thermally averaged annihilation cross-section � ∞ � σv Møl � = d ǫ K ( x, ǫ ) σv lab 0 and x = m T . 6 / 15
Results for scalar DM 40 Simplified models corresponding to spin 30 0 DM. O 1 ( h 1 , g 1 ) O 10 ( h 2 , g 1 ) � ˆ O 7 ( h 4 , g 4 ) and ˆ x f 20 O 1 ( h 3 , g 4 ) O 10 ( h 2 , g 1 ) not O 7 ( h 4 , g 4 ) compatible with the thermal 10 production mechanism for any value of M med . 0 � Ω DM h 2 much smaller than observed. 50 100 150 200 250 300 M med / GeV � ˆ O 1 ( h 1 , g 1 ) and ˆ O 1 ( h 3 , g 4 ) generate 10 6 values for Ω DM h 2 which are in O 1 ( h 1 , g 1 ) 1000 general too large O 10 ( h 2 , g 1 ) O 1 ( h 3 , g 4 ) � For M med ∼ 100 GeV Ω DM h 2 1 O 7 ( h 4 , g 4 ) → resonant production of DM 0.001 → compatible with observed relic density AND XENONnT/LZ signal 10 - 6 50 100 150 200 250 300 M med / GeV 7 / 15
Recommend
More recommend