conformal supergravity 4d scattering equations and monte
play

Conformal Supergravity, 4D Scattering Equations (and Monte Carlo - PowerPoint PPT Presentation

Conformal Supergravity, 4D Scattering Equations (and Monte Carlo Methods) Joe Farrow Based on Farrow, A Monte Carlo Approach to the 4D Scattering Equations, 1806.02732 Farrow & Lipstein, New Worldsheet Formulae for Conformal


  1. Conformal Supergravity, 4D Scattering Equations (and Monte Carlo Methods) Joe Farrow Based on Farrow, “A Monte Carlo Approach to the 4D Scattering Equations”, 1806.02732 Farrow & Lipstein, “New Worldsheet Formulae for Conformal Supergravity Amplitudes”, 1805.04504 Geyer, Lipstein & Mason, “Ambitwistor Strings in 4 Dimensions”, 1404.6219 26 th September 2018 J. A. Farrow 4D Scattering Equations 1 / 22

  2. Introduction Review of 4D ambitwistor string theory N = 4 conformal supergravity Solving the 4D scattering equations Current work and future directions 26 th September 2018 J. A. Farrow 4D Scattering Equations 2 / 22

  3. 4D Ambitwistor Review Witten 2003 considers a string theory where the target space is twistor space 26 th September 2018 J. A. Farrow 4D Scattering Equations 3 / 22

  4. 4D Ambitwistor Review Witten 2003 considers a string theory where the target space is twistor space Cachazo, He and Yuan 2013 introduce the scattering equations n k i · k j � = 0 s i − s j j =1 j � = i 26 th September 2018 J. A. Farrow 4D Scattering Equations 3 / 22

  5. 4D Ambitwistor Review Geyer, Lipstein and Mason 2014 consider worldsheet action � d 2 σ � � S = Z · ∂W + cZ · W � d 2 σ � � = � µ | ∂ | λ � + [ λ | ∂ | µ ] + c ( � µλ � + [ λµ ]) Amplitudes in field theory are correlation function of worldsheet vertex operators � | λ � � � � µ | � Z = W = | µ ] [ λ | 26 th September 2018 J. A. Farrow 4D Scattering Equations 4 / 22

  6. 4D Ambitwistor Review Penrose transform from twistor theory motivates plane-wave vertex opeartors � dt � � | l ] � l | ( σ ) = � lλ ( σ ) � S − 1 V S − ˜ δ 2 e it � µ ( σ ) l � | l ] − t | λ ( σ )] t 2 S − 1 26 th September 2018 J. A. Farrow 4D Scattering Equations 5 / 22

  7. 4D Ambitwistor Review Penrose transform from twistor theory motivates plane-wave vertex opeartors � dt � � | l ] � l | ( σ ) = � lλ ( σ ) � S − 1 V S − ˜ δ 2 e it � µ ( σ ) l � | l ] − t | λ ( σ )] t 2 S − 1 � � � dt V S + | r ] � r | ( σ ) = [ rλ ( σ )] S − 1 δ 2 e it [ µ ( σ ) r ] � r | − t � λ ( σ ) | t 2 S − 1 26 th September 2018 J. A. Farrow 4D Scattering Equations 5 / 22

  8. 4D Ambitwistor Review Amplitudes are supported on 4D scattering equations refined by MHV degree | r ] � l | � � | l ] = � r | = ( lr ) ( rl ) r ∈ R l ∈ L � � � � � � 26 th September 2018 J. A. Farrow 4D Scattering Equations 6 / 22

  9. 4D Ambitwistor Review Amplitudes are supported on 4D scattering equations refined by MHV degree | r ] � l | � � | l ] = � r | = ( lr ) ( rl ) r ∈ R l ∈ L � � � � � � σ i = 1 � 1 � ( ij ) = det( σ i σ j ) s i t i σ = ( σ 1 σ 2 ...σ n ) ∈ Gr (2 , n ) 26 th September 2018 J. A. Farrow 4D Scattering Equations 6 / 22

  10. 4D Ambitwistor Review Geyer, Lipstein and Mason 2014 write tree-level S matrices as integrals over these equations � d 2 × n σ � � � � � | r ] � l | 1 A (0) � � � δ 2 |N δ 2 n,L = | l ] − � r | − � GL (2) i ( i i +1) ( lr ) ( rl ) r r l l 26 th September 2018 J. A. Farrow 4D Scattering Equations 7 / 22

  11. 4D Ambitwistor Review Geyer, Lipstein and Mason 2014 write tree-level S matrices as integrals over these equations � d 2 × n σ � � � � � | r ] � l | 1 A (0) � � � δ 2 |N δ 2 n,L = | l ] − � r | − � GL (2) i ( i i +1) ( lr ) ( rl ) r r l l � d 2 × n σ GL (2) det ′ H det ′ ˜ M (0) n,L = H � � � � � | r ] � l | � δ 2 |N � δ 2 � | l ] − � r | − ( lr ) ( rl ) r r l l 26 th September 2018 J. A. Farrow 4D Scattering Equations 7 / 22

  12. Conformal Supergravity Berkovits and Witten 2004 consider N = 4 conformal supergravity amplitudes in twistor string framework. Action is schematically d 4 x √− g f ( φ ) W 2 � S = 26 th September 2018 J. A. Farrow 4D Scattering Equations 8 / 22

  13. Conformal Supergravity Berkovits and Witten 2004 consider N = 4 conformal supergravity amplitudes in twistor string framework. Action is schematically d 4 x √− g f ( φ ) W 2 � S = So equations of motion are now fourth order, ie. � 2 φ ( x ) = 0 solved by φ ( x ) = ( A + B · x ) e ik · x 26 th September 2018 J. A. Farrow 4D Scattering Equations 8 / 22

  14. Conformal Supergravity Graviton supermultiplet is Φ − = h − η 1 η 2 η 3 η 4 + η I η J η K ψ IJK + η I η J A IJ + η I ψ I + φ − 26 th September 2018 J. A. Farrow 4D Scattering Equations 9 / 22

  15. Conformal Supergravity Graviton supermultiplet is Φ − = h − η 1 η 2 η 3 η 4 + η I η J η K ψ IJK + η I η J A IJ + η I ψ I + φ − Out-of-MHV amplitudes can now be non-zero M (0) ( − − − ) = δ 8 ( Q ) M (0) ( h − h − φ − ) = � 12 � 4 M (0) ( h − h − h − ) = 0 , M (0) ( h − h − h + ) = 0 So we grade amplitude by both MHV degree and a separate Grassmann degree 26 th September 2018 J. A. Farrow 4D Scattering Equations 9 / 22

  16. Conformal Supergravity 4 types of plane wave vertex operator � dt � � V − ˜ δ 2 | 4 e it � µ ( σ ) l � | l ] � l | ( σ ) = � lλ ( σ ) � | l ] − t | λ ( σ )] t 2 � � � V + ˜ δ 2 | 4 e it � µ ( σ ) l � | l ] � l | ( σ ) = [ λ∂λ ( σ )] | l ] − t | λ ( σ )] dt t 26 th September 2018 J. A. Farrow 4D Scattering Equations 10 / 22

  17. Conformal Supergravity 4 types of plane wave vertex operator � dt � � V − ˜ δ 2 | 4 e it � µ ( σ ) l � | l ] � l | ( σ ) = � lλ ( σ ) � | l ] − t | λ ( σ )] t 2 � � � V + ˜ δ 2 | 4 e it � µ ( σ ) l � | l ] � l | ( σ ) = [ λ∂λ ( σ )] | l ] − t | λ ( σ )] dt t � dt � � V + δ 2 e it ([ µ ( σ ) r ]+ χ ( σ ) · η i ) � r | − t � λ ( σ ) | | r ] � r | ( σ ) = [ rλ ( σ )] t 2 � � � V − ˜ δ 2 e it ([ µ ( σ ) r ]+ χ ( σ ) · η i ) | r ] � r | ( σ ) = � λ∂λ ( σ ) � � r | − t � λ ( σ ) | dt t 26 th September 2018 J. A. Farrow 4D Scattering Equations 10 / 22

  18. Conformal Supergravity Plane wave graviton multiplet S-matrix � d 2 × n σ � � � � � | r ] � l | M (0) � δ 2 | 4 � � δ 2 n,L, Φ − = | l ] − � r | − GL (2) ( lr ) ( rl ) r r l l � � ˜ � � ˜ H l − F l + F r − H r + l + ∈ L ∩ Φ + r + ∈ R ∩ Φ + l − ∈ L ∩ Φ − r − ∈ R ∩ Φ − 26 th September 2018 J. A. Farrow 4D Scattering Equations 11 / 22

  19. Conformal Supergravity Non-plane wave states φ ( x ) = B · xe ik · x = − iB · ∂ ∂ke ik · x 26 th September 2018 J. A. Farrow 4D Scattering Equations 12 / 22

  20. Conformal Supergravity Non-plane wave states φ ( x ) = B · xe ik · x = − iB · ∂ ∂ke ik · x Vertex operators � dt � � � � | l � [ µ ( σ ) | − | λ ( σ ) � ∂ V − ˜ δ 2 | 4 e it � µ ( σ ) l � | l ] � l | ( σ ) = B · | l ] − t | λ ( σ )] t 2 ∂ | l ] � � � ˜ V + | l ] � l | ( σ ) = B · tdt | ∂µ ( σ ) � [ λ ( σ ) | − | µ ( σ ) � [ ∂λ ( σ ) | � � δ 2 | 4 e it � µ ( σ ) l � | l ] − t | λ ( σ )] 26 th September 2018 J. A. Farrow 4D Scattering Equations 12 / 22

  21. Conformal Supergravity M ( h − x h − h + ...h + ) 26 th September 2018 J. A. Farrow 4D Scattering Equations 13 / 22

  22. Conformal Supergravity M ( h − x h − h + ...h + ) � d 2 × n σ ∂ ∂ �� | 1 � ∂ | 2] − | 2 � � � [ rr ′ ] � 12 � ∂ | 1] � = B 1 · ( rr ′ ) GL (2) (12) (12) r ∈ R r ′ ∈ R � [ r ′ r ′′ ] | 1 � [ r | � � � δ ( SE n + L ) ( r ′ r ′′ ) (1 r ) r ∈ R r ′ � = r ∈ R r ′′ ∈ R 26 th September 2018 J. A. Farrow 4D Scattering Equations 13 / 22

  23. Conformal Supergravity M ( h − x h − h + ...h + ) � d 2 × n σ ∂ ∂ �� | 1 � ∂ | 2] − | 2 � � � [ rr ′ ] � 12 � ∂ | 1] � = B 1 · ( rr ′ ) GL (2) (12) (12) r ∈ R r ′ ∈ R � [ r ′ r ′′ ] | 1 � [ r | � � � δ ( SE n + L ) ( r ′ r ′′ ) (1 r ) r ∈ R r ′ � = r ∈ R r ′′ ∈ R � � � � 12 � | 1 � [ r | ∂ = � 12 � 4 B 1 · ψ | 1 �| 2 � � � δ 4 ( P ) + ψ r ′ ,n � 1 r � 2 � 2 r � r,n ∂P 1 r ∈ R r ∈ R r ′ ∈ R,r ′ � = r 26 th September 2018 J. A. Farrow 4D Scattering Equations 13 / 22

  24. Conformal Supergravity M ( h − x h − h + ...h + ) � d 2 × n σ ∂ ∂ �� | 1 � ∂ | 2] − | 2 � � � [ rr ′ ] � 12 � ∂ | 1] � = B 1 · ( rr ′ ) GL (2) (12) (12) r ∈ R r ′ ∈ R � [ r ′ r ′′ ] | 1 � [ r | � � � δ ( SE n + L ) ( r ′ r ′′ ) (1 r ) r ∈ R r ′ � = r ∈ R r ′′ ∈ R � � � � 12 � | 1 � [ r | ∂ = � 12 � 4 B 1 · ψ | 1 �| 2 � � � δ 4 ( P ) + ψ r ′ ,n � 1 r � 2 � 2 r � r,n ∂P 1 r ∈ R r ∈ R r ′ ∈ R,r ′ � = r � � � = � 12 � 4 B 1 · ∂ ψ | 1 �| 2 � δ 4 ( P ) r,n ∂P 1 r ∈ R 26 th September 2018 J. A. Farrow 4D Scattering Equations 13 / 22

  25. Solving the Equations How do we extract amplitudes from worldsheet integrals? � d 2 × n σ GL (2) δ 2 × n ( SE n A (0) n,L = L ) f ( σ ) f ( σ sol ) = δ 4 ( P ) � � ll ′ � − 2 det( J n ll ′ ( σ sol )) L σ sol ∈ solutions 26 th September 2018 J. A. Farrow 4D Scattering Equations 14 / 22

Recommend


More recommend