computational peeling art design
play

Computational Peeling Art Design Hao Liu, Xiao-Teng Zhang, Xiao-Ming - PowerPoint PPT Presentation

Computational Peeling Art Design Hao Liu, Xiao-Teng Zhang, Xiao-Ming Fu, Zhi-Chao Dong, Ligang Liu University of Science and Technology of China Peeling art design Popular art form Peeling art examples Yoshihiro Okadas method Peeling art


  1. Computational Peeling Art Design Hao Liu, Xiao-Teng Zhang, Xiao-Ming Fu, Zhi-Chao Dong, Ligang Liu University of Science and Technology of China

  2. Peeling art design

  3. Popular art form

  4. Peeling art examples

  5. Yoshihiro Okada’s method

  6. Peeling art design problem

  7. Challenges of the computational method • Non-trivial to optimize the similarity • Unsuitable input shape

  8. Existing work: cut generation • Minimum spanning tree method [Chai et al. 2018; Sheffer 2002; Sheffer and Hart 2002] • Mesh segmentation approaches [Julius et al. 2005; Lévy et al. 2002; Sander et al. 2002, 2003; Zhang et al. 2005; Zhou et al. 2004] • Simultaneous optimization [Li et al. 2018; Poranne et al.2017] • Variational method [Sharp and Crane 2018]

  9. Existing work: cut generation • Minimum spanning tree method [Chai et al. 2018; Sheffer 2002; Sheffer and Hart 2002] • Mesh segmentation approaches [Julius et al. 2005; Lévy et al. 2002; Sander et al. 2002, 2003; Zhang et al. 2005; Zhou et al. 2004] • Simultaneous optimization [Li et al. 2018; Poranne et al.2017] • Variational method [Sharp and Crane 2018] unfolded shapes ≠ input shapes

  10. Our approach Cut generation

  11. Key idea Cut generation Difficult Mapping computation Easy

  12. Mapping computation 𝑆 Φ Input 𝑇 𝑇 𝑛 = Φ(𝑇) Two goals: min 𝐹 𝑗𝑡𝑝 𝑇 𝑛 , 𝑇 + 𝑥𝐹 𝑡ℎ𝑠 (𝑆) 1. Low isometric distortion 2. Area of 𝑆 approaches zero

  13. Isometric energy • ARAP distortion metric [Liu et al. 2008] 𝑂 𝑔 2 𝐹 𝑗𝑡𝑝 𝑇 𝑛 , 𝑇 = 𝐵𝑠𝑓𝑏 𝑔 𝑗 ||𝐾 𝑗 − 𝑆 𝑗 || 𝐺 𝑗=1 𝑆 𝑗 is an orthogonal matrix

  14. Shrink energy • Our novel rank-one energy 𝑂 𝑆𝑔 𝐵𝑠𝑓𝑏 𝑢 𝑗 ||𝐾 𝑗 − 𝐶 𝑗 || 𝐺 2 𝐹 𝑡ℎ𝑠 𝑆 = 𝑗=1 𝐶 𝑗 is a rank one matrix • Other choices 2 • Frobenius energy ||𝐾 𝑗 || 𝐺 • Determinant energy det 𝐾 𝑗 2 det 𝐾 𝑗 Input ||𝐾 𝑗 || 𝐺 rank-one

  15. min 𝐹 𝑗𝑡𝑝 𝑇 𝑛 , 𝑇 + 𝑥𝐹 𝑡ℎ𝑠 (𝑆) Local-global solver 𝑡𝑢. 𝜖𝑆 = 𝜖𝑇 𝑛 and 𝑤 𝑛 , 𝑤 𝑆 ∈ 𝑁 Local step : 𝑂 𝑔 𝐹 𝑗𝑡𝑝 𝑇 𝑛 , 𝑇 = 2 𝑈 𝐵𝑠𝑓𝑏 𝑔 𝑗 ||𝐾 𝑗 − 𝑆 𝑗 || 𝐺 𝑆 𝑗 = 𝑉 𝑗 𝑊 𝑗 𝑗=1 𝑂 𝑆𝑔 𝑈 2 𝐶 𝑗 = 𝑉 𝑗 𝑒𝑗𝑏𝑕 𝜏 𝑗 , 0 𝑊 𝐹 𝑡ℎ𝑠 𝑆 = 𝐵𝑠𝑓𝑏 𝑢 𝑗 ||𝐾 𝑗 − 𝐶 𝑗 || 𝐺 𝑗 𝑗=1 Global step : 𝑜𝑓𝑥 = 𝑄(𝑤 𝑙 + 𝜀𝑤 𝑙 ) 𝑤𝑏𝑠𝑗𝑏𝑐𝑚𝑓𝑡 𝜀𝑤 𝑙 𝑗𝑜 tangent space 𝑤 𝑙 𝑘 𝑈 𝐺 𝑘 = 𝐺 𝑤 𝜀𝑤 𝑙 𝜀𝑤 𝑙 𝑗𝑜 𝐺 𝑘 𝑗𝑡 𝜀𝑤 𝑙 𝑙 𝑙

  16. Some details Representations of M stalk locations

  17. Suitable input

  18. Unsuitable input

  19. Iterative interaction Mapping Process Almost cover Final resulting cut Iterative design Cut Generation Interaction Process

  20. Interaction place Prune and Unfold 𝑇 𝑛 and 𝑆 Decompose

  21. Interaction 1: shape augmentation

  22. Interaction 2: part deletion

  23. Interaction 3: angle augmentation

  24. Interaction 4: curvature reduction

  25. Interaction 5: pre-processing Input Input Unprocessed Processed with specify area high distortion low distortion

  26. Interaction 5: pre-processing Input with specify area Unprocessed: high distortion Align to initialize Processed: low distortion

  27. Cut generation Mapped shape Resulting cut Simplify boundary

  28. Real peeling

  29. Real design

  30. Real peeling

  31. Experiments

  32. Shapes designed by Yoshihiro Okada

  33. Comparison to Yoshihiro Okada Okada’s Ours Dove Eagle Shrimp

  34. Our results

  35. More results

  36. Conclusion • A computational tool for peeling art design and construction. • Unsuitable input 2D shapes are rectified by an iterative process.

  37. Limitations: conservation principle … User input Interaction many times also cannot keep posture

  38. Thank you

Recommend


More recommend