computational number theory
play

COMPUTATIONAL NUMBER THEORY 1 / 70 Notation Z = { . . . , 2 , 1 , - PowerPoint PPT Presentation

COMPUTATIONAL NUMBER THEORY 1 / 70 Notation Z = { . . . , 2 , 1 , 0 , 1 , 2 , . . . } N = { 0 , 1 , 2 , . . . } Z + = { 1 , 2 , 3 , . . . } d | a means d divides a Example: 2 | 4. For a , N Z let gcd( a , N ) be the largest d Z +


  1. Examples Let N = 14 and G = Z ∗ N . Then modulo N we have 5 3 = 11 / 70

  2. Examples Let N = 14 and G = Z ∗ N . Then modulo N we have 5 3 = 5 · 5 · 5 11 / 70

  3. Examples Let N = 14 and G = Z ∗ N . Then modulo N we have 5 3 = 5 · 5 · 5 ≡ 25 · 5 ≡ 11 · 5 ≡ 55 ≡ 13 and 5 − 3 = 11 / 70

  4. Examples Let N = 14 and G = Z ∗ N . Then modulo N we have 5 3 = 5 · 5 · 5 ≡ 25 · 5 ≡ 11 · 5 ≡ 55 ≡ 13 and 5 − 3 = 5 − 1 · 5 − 1 · 5 − 1 11 / 70

  5. Examples Let N = 14 and G = Z ∗ N . Then modulo N we have 5 3 = 5 · 5 · 5 ≡ 25 · 5 ≡ 11 · 5 ≡ 55 ≡ 13 and 5 − 3 = 5 − 1 · 5 − 1 · 5 − 1 ≡ 3 · 3 · 3 11 / 70

  6. Examples Let N = 14 and G = Z ∗ N . Then modulo N we have 5 3 = 5 · 5 · 5 ≡ 25 · 5 ≡ 11 · 5 ≡ 55 ≡ 13 and 5 − 3 = 5 − 1 · 5 − 1 · 5 − 1 ≡ 3 · 3 · 3 ≡ 27 ≡ 13 11 / 70

  7. Group Orders The order of a group G is its size | G | , meaning the number of elements in it. Example: The order of Z ∗ 21 is 12 / 70

  8. Group Orders The order of a group G is its size | G | , meaning the number of elements in it. Example: The order of Z ∗ 21 is 12 because Z ∗ 21 = { 1 , 2 , 4 , 5 , 8 , 10 , 11 , 13 , 16 , 17 , 19 , 20 } Let G be a group of order m and a ∈ G . Then, a m = 1 . Fact: Examples: Modulo 21 we have • 5 12 ≡ (5 3 ) 4 ≡ 20 4 ≡ ( − 1) 4 ≡ 1 • 8 12 ≡ (8 2 ) 6 ≡ (1) 6 ≡ 1 12 / 70

  9. Group Orders Corollary: Let G be a group of order m and a ∈ G . Then for any i ∈ Z , a i = a i mod m . What is 5 74 mod 21? Example: 13 / 70

  10. Group Orders Corollary: Let G be a group of order m and a ∈ G . Then for any i ∈ Z , a i = a i mod m . What is 5 74 mod 21? Example: Let G = Z ∗ Solution: 21 and a = 5. Then, m = 12, so 5 74 mod 21 = 5 74 mod 12 mod 21 = 5 2 mod 21 = 4 . 13 / 70

  11. Measuring Running Time of Algorithms on Numbers In an algorithms course, the cost of arithmetic is often assumed to be O (1), because numbers are small. In cryptography numbers are very, very BIG! Typical sizes are 2 512 , 2 1024 , 2 2048 . Numbers are provided to algorithms in binary. The length of a , denoted | a | , is the number of bits in the binary encoding of a . Example: | 7 | = 3 because 7 is 111 in binary. Running time is measured as a function of the lengths of the inputs. 14 / 70

  12. Addition ( a , b ) �→ a + b 1 0 1 1 0 1 + 1 0 1 1 1 1 1 0 0 0 By the usual “carry” algorithm, we can compute a + b in time O ( | a | + | b | ). Addition is linear time. 15 / 70

  13. Multiplication ( a , b ) �→ ab 1 0 1 1 1 0 × 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 + 1 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 By the usual algorithm, we can compute ab in time O ( | a | · | b | ). Multiplication is quadratic time. 16 / 70

  14. Integer Division INT - DIV ( a , N ) returns ( q , r ) such that • a = qN + r • 0 ≤ r < N Example: INT - DIV (17 , 3) = (5 , 2) By the usual algorithm, we can compute INT - DIV ( a , N ) in time O ( | a | · | N | ). Integer division is quadratic time. 17 / 70

  15. MOD ( a , N ) �→ a mod N But ( q , r ) ← INT - DIV ( a , N ) return r computes a mod N , so again the time needed is O ( | a | · | N | ). Mod is quadratic time. 18 / 70

  16. About gcd Fact: If a , N ∈ Z and ( a , N ) � = (0 , 0) then gcd( a , N ) is the smallest positive integer in the set { a · a ′ + N · N ′ : a ′ , N ′ ∈ Z } If d = gcd( a , N ) then there are “weights” a ′ , N ′ ∈ Z such Corollary: that d = a · a ′ + N · N ′ gcd(20 , 12) = 4 and 4 = 20 · a ′ + 12 · N ′ for Example: • a ′ = • N ′ = 19 / 70

  17. About gcd Fact: If a , N ∈ Z and ( a , N ) � = (0 , 0) then gcd( a , N ) is the smallest positive integer in the set { a · a ′ + N · N ′ : a ′ , N ′ ∈ Z } If d = gcd( a , N ) then there are “weights” a ′ , N ′ ∈ Z such Corollary: that d = a · a ′ + N · N ′ gcd(20 , 12) = 4 and 4 = 20 · a ′ + 12 · N ′ for Example: • a ′ = 2 • N ′ = − 3 19 / 70

  18. Extended gcd EXT - GCD ( a , N ) �→ ( d , a ′ , N ′ ) such that d = gcd( a , N ) = a · a ′ + N · N ′ . Lemma: Let ( q , r ) = INT - DIV ( a , N ). Then, gcd( a , N ) = gcd( N , r ) Example: INT - DIV (17 , 3) = (5 , 2) so gcd(17 , 3) = gcd(3 , 2). 20 / 70

  19. Extended gcd EXT - GCD ( a , N ) �→ ( d , a ′ , N ′ ) such that d = gcd( a , N ) = a · a ′ + N · N ′ . Lemma: Let ( q , r ) = INT - DIV ( a , N ). Then, gcd( a , N ) = gcd( N , r ) Alg EXT - GCD ( a , N ) / / ( a , N ) � = (0 , 0) if N = 0 then return ( a , 1 , 0) else ( q , r ) ← INT - DIV ( a , N ) ( d , x , y ) ← EXT - GCD ( N , r ) a ′ ← ; N ′ ← return ( d , a ′ , N ′ ) 20 / 70

  20. Extended gcd We know that a = qN + r with 0 ≤ r < N and we have d , x , y satisfying d = gcd( N , r ) = Nx + ry Then d = Nx + ry = Nx + ( a − qN ) y = ay + N ( x − qy ) so d = gcd( a , N ) = a · a ′ + N · N ′ with a ′ = y and N ′ = x − qy . 21 / 70

  21. Extended gcd Alg EXT - GCD ( a , N ) / / ( a , N ) � = (0 , 0) if N = 0 then return ( a , 1 , 0) else ( q , r ) ← INT - DIV ( a , N ) ( d , x , y ) ← EXT - GCD ( N , r ) a ′ ← y ; N ′ ← x − qy return ( d , a ′ , N ′ ) Running time analysis is non-trivial (worst case is Fibonacci numbers) and shows that the time is O ( | a | · | N | ). So the extended gcd can be computed in quadratic time. 22 / 70

  22. Modular Inverse For a , N such that gcd( a , N ) = 1, we want to compute a − 1 mod N , meaning the unique a ′ ∈ Z ∗ N satisfying aa ′ ≡ 1 (mod N ). But if we let ( d , a ′ , N ′ ) ← EXT-GCD( a , N ) then d = 1 = gcd( a , N ) = a · a ′ + N · N ′ But N · N ′ ≡ 0 (mod N ) so aa ′ ≡ 1 (mod N ) Alg MOD - INV ( a , N ) ( d , a ′ , N ′ ) ← EXT - GCD ( a , N ) return a ′ mod N Modular inverse can be computed in quadratic time. 23 / 70

  23. Modular Exponentiation Let G be a group and a ∈ G . For n ∈ N , we want to compute a n ∈ G . We know that a n = a · a · · · a � �� � n Consider: y ← 1 for i = 1 , . . . , n do y ← y · a return y Question: Is this a good algorithm? 24 / 70

  24. Modular Exponentiation Let G be a group and a ∈ G . For n ∈ N , we want to compute a n ∈ G . We know that a n = a · a · · · a � �� � n Consider: y ← 1 for i = 1 , . . . , n do y ← y · a return y Question: Is this a good algorithm? Answer: It is correct but VERY SLOW. The number of group operations is O ( n ) = O (2 | n | ) so it is exponential time. For n ≈ 2 512 it is prohibitively expensive. 24 / 70

  25. Fast exponentiation idea We can compute → a 2 − → a 4 − → a 8 − → a 16 − → a 32 a − in just 5 steps by repeated squaring. So we can compute a n in i steps when n = 2 i . But what if n is not a power of 2? 25 / 70

  26. Fast Exponentiation Example Suppose the binary length of n is 5, meaning the binary representation of n has the form b 4 b 3 b 2 b 1 b 0 . Then 2 4 b 4 + 2 3 b 3 + 2 2 b 2 + 2 1 b 1 + 2 0 b 0 n = = 16 b 4 + 8 b 3 + 4 b 2 + 2 b 1 + b 0 . We want to compute a n . Our exponentiation algorithm will proceed to compute the values y 5 , y 4 , y 3 , y 2 , y 1 , y 0 in turn, as follows: y 5 = 1 y 2 5 · a b 4 a b 4 y 4 = = y 2 a 2 b 4 + b 3 4 · a b 3 = = y 3 y 2 3 · a b 2 a 4 b 4 +2 b 3 + b 2 y 2 = = y 2 2 · a b 1 a 8 b 4 +4 b 3 +2 b 2 + b 1 = = y 1 a 16 b 4 +8 b 3 +4 b 2 +2 b 1 + b 0 . y 2 1 · a b 0 y 0 = = 26 / 70

  27. Fast Exponentiation Algorithm Let bin( n ) = b k − 1 . . . b 0 be the binary representation of n , meaning k − 1 � b i 2 i n = i =0 Alg EXP G ( a , n ) / / a ∈ G , n ≥ 1 b k − 1 . . . b 0 ← bin( n ) y ← 1 for i = k − 1 downto 0 do y ← y 2 · a b i return y The running time is O ( | n | ) group operations. MOD-EXP( a , n , N ) returns a n mod N in time O ( | n | · | N | 2 ), meaning is cubic time. 27 / 70

  28. Algorithms Summary Algorithm Input Output Time INT - DIV a , N q , r quadratic MOD a , N a mod N quadratic ( d , a ′ , N ′ ) EXT - GCD a , N quadratic MOD - ADD a , b , N a + b mod N linear MOD - MULT a , b , N ab mod N quadratic a − 1 mod N MOD - INV a , N quadratic a n mod N MOD - EXP a , n , N cubic a n ∈ G EXP G a , n O ( | n | ) G -ops 28 / 70

  29. Subgroups Definition: Let G be a group and S ⊆ G . Then S is called a subgroup of G if S is itself a group under G ’s operation. Example: Let G = Z ∗ 11 and S = { 1 , 2 , 3 } . Then S is not a subgroup because • 2 · 3 mod 11 = 6 �∈ S , violating Closure. • 3 − 1 mod 11 = 4 �∈ S , violating Inverse. But { 1 , 3 , 4 , 5 , 9 } is a subgroup, as you can check. 29 / 70

  30. Order of a group element Let G be a (finite) group. Definition: The order of g ∈ G , denoted o ( g ), is the smallest integer n ≥ 1 such than g n = 1 . 30 / 70

  31. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 31 / 70

  32. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 31 / 70

  33. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 31 / 70

  34. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 31 / 70

  35. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 31 / 70

  36. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 31 / 70

  37. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 31 / 70

  38. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 31 / 70

  39. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 31 / 70

  40. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 31 / 70

  41. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 31 / 70

  42. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 31 / 70

  43. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 31 / 70

  44. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 31 / 70

  45. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 31 / 70

  46. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 31 / 70

  47. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 31 / 70

  48. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 31 / 70

  49. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 31 / 70

  50. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 31 / 70

  51. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 31 / 70

  52. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 9 31 / 70

  53. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 9 1 31 / 70

  54. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 9 1 The order o ( a ) of a is the smallest n ≥ 1 such that a n = 1. So • o (2) = 31 / 70

  55. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 9 1 The order o ( a ) of a is the smallest n ≥ 1 such that a n = 1. So • o (2) = 10 31 / 70

  56. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 9 1 The order o ( a ) of a is the smallest n ≥ 1 such that a n = 1. So • o (2) = 10 • o (5) = 31 / 70

  57. Order determinations Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . 0 1 2 3 4 5 6 7 8 9 10 i 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 9 1 The order o ( a ) of a is the smallest n ≥ 1 such that a n = 1. So • o (2) = 10 • o (5) = 5 31 / 70

  58. Subgroup generated by g ∈ G Definition: For g ∈ G we let { g 0 , g 1 , . . . , g o ( g ) − 1 } . � g � = This is a subgruop of G and its order (that is, its size) is the order o ( g ) of G . 32 / 70

  59. Subgroup orders Fact: The order | S | of a subgroup S always divides the order | G | of the group G . Fact: The order o ( g ) of g ∈ G always divides | G | . Example: If G = Z ∗ 11 then • | G | = 33 / 70

  60. Subgroup orders Fact: The order | S | of a subgroup S always divides the order | G | of the group G . Fact: The order o ( g ) of g ∈ G always divides | G | . Example: If G = Z ∗ 11 then • | G | = 10 • o (2) = 10 which divides 10 • o (5) = 5 which divides 10 33 / 70

  61. Subgroups generated by a group element Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . i 0 1 2 3 4 5 6 7 8 9 10 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 9 1 so � 2 � = � 5 � = 34 / 70

  62. Subgroups generated by a group element Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . i 0 1 2 3 4 5 6 7 8 9 10 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 9 1 so � 2 � = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } � 5 � = 34 / 70

  63. Subgroups generated by a group element Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . i 0 1 2 3 4 5 6 7 8 9 10 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 9 1 so � 2 � = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } � 5 � = { 1 , 3 , 4 , 5 , 9 } 34 / 70

  64. Generators Definition: g ∈ G is a generator (or primitive element) if � g � = G . Fact: g ∈ G is a generator iff o ( g ) = | G | . Definition: G is cyclic if it has a generator. 35 / 70

  65. Generators Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . i 0 1 2 3 4 5 6 7 8 9 10 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 9 1 so � 2 � = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } � 5 � = { 1 , 3 , 4 , 5 , 9 } 36 / 70

  66. Generators Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . i 0 1 2 3 4 5 6 7 8 9 10 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 9 1 so � 2 � = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } � 5 � = { 1 , 3 , 4 , 5 , 9 } • Is 2 a generator? 36 / 70

  67. Generators Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . i 0 1 2 3 4 5 6 7 8 9 10 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 9 1 so � 2 � = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } � 5 � = { 1 , 3 , 4 , 5 , 9 } • Is 2 a generator? YES because � 2 � = Z ∗ 11 . 36 / 70

  68. Generators Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . i 0 1 2 3 4 5 6 7 8 9 10 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 9 1 so � 2 � = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } � 5 � = { 1 , 3 , 4 , 5 , 9 } • Is 2 a generator? YES because � 2 � = Z ∗ 11 . • Is 5 a generator? 36 / 70

  69. Generators Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . i 0 1 2 3 4 5 6 7 8 9 10 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 9 1 so � 2 � = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } � 5 � = { 1 , 3 , 4 , 5 , 9 } • Is 2 a generator? YES because � 2 � = Z ∗ 11 . • Is 5 a generator? NO because � 5 � � = Z ∗ 11 . 36 / 70

  70. Generators Let G = Z ∗ 11 = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } . i 0 1 2 3 4 5 6 7 8 9 10 2 i mod 11 1 2 4 8 5 10 9 7 3 6 1 5 i mod 11 1 5 3 4 9 1 5 3 4 9 1 so � 2 � = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 } � 5 � = { 1 , 3 , 4 , 5 , 9 } • Is 2 a generator? YES because � 2 � = Z ∗ 11 . • Is 5 a generator? NO because � 5 � � = Z ∗ 11 . • Is Z ∗ 11 cyclic? 36 / 70

Recommend


More recommend