computational methods rna secondary structure chembnet
play

Computational Methods RNA Secondary Structure. chEMBnet RNA05, - PowerPoint PPT Presentation

Computational Methods RNA Secondary Structure. chEMBnet RNA05, 2005/9/30 Michael Zuker Department of Mathematical Sciences Rensselaer Polytechnic Institute Troy, NY. Credit: Supported in part by grant #GM54250 to MZ (NIGMS)


  1. Computational Methods RNA Secondary Structure. chEMBnet RNA05, 2005/9/30 Michael Zuker Department of Mathematical Sciences Rensselaer Polytechnic Institute Troy, NY. Credit: • Supported in part by grant #GM54250 to MZ (NIGMS) • “HYBRID” package: Nick Markham • Secondary structure and dot plot software: Darrin Stewart • RNA energy parameters: Doug Turner, David Mathews et al. • Web server – Cluster of 36 dual processor Linux computers donated by IBM Res. (SUR grant to MZ) – Sys. Admin. by Alex Yu – Secure home at the Voorhees Computer Center.

  2. G A G U A U U G A U C G A G A U G G C U U C C H I I B A U C U G C C G A A G G A U C U A A G A A U A A C G G Bacillus subtilis RNase P RNA C C G C A I M - multi-loop A G C U A I - interior loop C G G A G B - bulge loop U G I G A H - hairpin loop A U A A U C A G U G C G C U A A H B G U U C G A U G A C G U C C G C G A G A G A G A U U C U C A C U A M H A G A G U G G U A G A G C U G G U A U A G G 5’ C U U G G A C A U U A U G G C C C G U G G A H M H 3’ B C A A C G G G C A C C U G U C U C C U U C A C C A G U G C A U C G U A U A G A A G U U A C G H H A A U U G C U G C A U C C C C G A U G C A U G G A G G A U A G U C A A A G A U G A U A A A C G C U A G U A G G U A A U C G C C C C U M M H A C C G U U A G U G G G U U G G A G U C A G G A C U G A A A A C A U U G A C G A C A U G G A A U A C H M C G U A G U G C G A A G G A C U U U A G A A A C U A C G G H U U U G C G A G G A U A G G A U C A G U A C A A I I U U A H C C G G C G G G U G G U U C A H A A A U C U Traditional RNA secondary structure plot

  3. Circular plot – What good is it? Output of sir_graph 210 by D. Stewart and M. Zuker 180 A U A U G G C U G A G U A U C C U U G A A A G U G C C A C A G U G A C G A A G U C U C A C U A G A A A U G G U G A G A G U G G A A C G C G G U A A A C C C C U C G A G C G A G A A A C C 240 150 G C G A C A U A U U C U U U G U C G A G U U C A C G G G 270 A G A G A A A A A C A C G U G U A C C U G U G A C A A C G G U G C A G A G U 120 A U G C A A U A U C U G C G U A G G A A C G G A G A G G A G U 300 A C C G A A G A A U A A U C G U C G U A U A U G C C U G G A U U A C G C 90 A G U U A G G C A U U U G G A U U G U A G U C G C C G C C C C 330 G U U G A A G G A U G A U C C G G A U G G G G U C G A A C U G G C A U G C C 60 G C U G A U C U C U U G G C A A A G A U G A G C A G G A A U U G G 360 G U A C A U C A A A A G A U A U C C A U U A G G A G C C U G U U A C C G A C G U A A A A U C G G 30 G G U U C G A U U C A G C A A C A U U C U U U C U G 1 401 ENERGY = -85.7 Bacillus subtilis RNase P RNA

  4. What is a pseudoknot? Mathematical: r 1 r 2 r 3 . . . r n – sequence of an RNA Two base pairs (BPs), r i · r j and r i ′ · r j ′ , can be called “incompatible” if i < i ′ < j < j ′ . A pseudoknot is created by two “stems” (helices) that are incompatible. That is, every BP in one is incompatible with every BP in the other. Example of a simple pseudoknot. A-C 3´- A-G-G-C-U/ U U-C-C-G-A-G-G-G U C-C-C - 5´ C--U--C/ Stem 1: C 1 · G 15 , C 2 · G 14 , C 3 · G 13 , is incompatible with Stem 2: U 8 · A 23 , C 9 · G 22 , C 10 · G 21 , G 11 · C 20 , A 12 · U 19 . Is this possible? – Yes.

  5. 3D model of simple pseudoknot.

  6. 12 A G G 14 10 G C G C 16 U 8 U C U A 18 C 6 U U C 20 C 4 G C G C A C 2 1 23 Intersecting BP arcs indicate a pseudoknot

  7. U G C A A A G C P9.1a U A G C A U A G G G U A 340 A G 360 G C P9.1 G C C G G C A U U G 380 P9 P9.2 C G G A A C U A A U U U G U A U G C GA AU G G G A G A A U U C C U C U U G A U U A G U A U A U G A U U 320 400 U A G C G A G A C A A 3’ G C U A U A G U U G C A 200 G C C GU U A a U U P5a G U 120 P10 A U A u A C C U G P5 G C C g C C G C G U A C A U A g U A P9.0 C G C G U a C G G G 20 U A a u G U A A U U A A U G C A A G u P1 A A C G G c A U A A U A A u A P7 G C G C 180 G c C G P5c G C G u A U A A A G GG U A U C G 5’ A U A A C G c 260 G G C C A A P4 C A C G U G U C C A U G U A U G A 140 A U U G A C G A U G U U P6 U U 160 G C C G A A G G C A U C A P3 C G G C 100 P5b A U U A C G A U A C G G A U U G A A G A C G C U G U A 220 G U C G 80 U A U U A P6a A G A C 300 C G A A A G C G C G C G 280 C G U U U G A U P2.1 A C G A U A P8 A U A A U G U U A U A U A C G U AA C G U A U A A U U U C G 60 P6b A U A G U G C G U G C A U A 240 G C A A U A U C U A A A Tetrahymena thermophila LSU rRNA A U G C U G GenBank# J01235 P2 U A A U Eucarya, Protoctista, Ciliophora (IC1) U G C G Jun 09, 1994 A U G C 40 G C C A A U GC Can you find the pseudoknot?

  8. 210 240 180 G A U G G C C U U G C A A A G G G U A U G G U A A U A A G C U G A C G G A C A U G G U C C U A A C C A C G C A G C C A A G U C C U A A G U C A A C A G A U C U U C U G U U G A U A U G G A U G C 270 A A G G U U U U U C 150 C A A C A A A G G A G C G U G A A A C A U U C G U U G C A G A G C U C C A G U G G G A G C A U A U G G A C U C G G U A A C 300 U A U A C C U U U G 120 C G U G C G A A U A A A A G G G A G U C A G U U A U G A U A C A G C G U A G C C C C U A C G U A C A C C U G U G A A 330 A A U A G A G U G 90 U A U G G C G U C A U G A C C G G G U A U U A G G A A A U G A U A G C A C U A G A C A A U A U C U A C C U U G G A G U 360 A C G G C A C U G G 60 C G U U G C G C G A A C A G C U U A A C A G U G U A U C G U U A A U U U G G C A G A A A A A A G G G U G A A U G A G U U U U U G C A C U A A U 390 U G U U U A U U U U A A G G C G G A 30 A U A A U A A U G C U C C U C U C 1 419 Tetrahymena thermophila LSU rRNA Now you can. P3 and P7 create a pseudoknot.

  9. U G C A A A G C P9.1a U A G C A U A G G G U A 340 A G 360 G C P9.1 G C C G G C A U U G 380 P9 P9.2 C G G A A C U A A U U U G U A U G C GA AU G G G A G A A U U C C U C U U G A U U A G U A U A U G A U U 320 400 U A G C G A G A C A A 3’ G C U A U A G U U G C A 200 G C C GU U A a U U P5a G U 120 P10 A U A u A C C U G P5 G C C g C C G C G U A C A U A g U A P9.0 C G C G U a C G G G 20 U A a u G U A A U U A A U G C A A G u P1 A A C G G c A U A A U A A u A P7 G C G C 180 G c C G P5c G C G u A U A A A G GG U A U C G 5’ A U A A C G c 260 G P3 and P7 create G C C A A P4 C A C G U G U C C A U G U A U G A 140 a pseudoknot A U U G A C G A U G U U P6 U U 160 G C C G A A G G C A U C A P3 C G G C 100 P5b A U U A C G A U A C G G A U U G A A G A C G C U G U A 220 G U C G 80 U A U U A P6a A G A C 300 C G A A A G C G C G C G 280 C G U U U G A U P2.1 A C G A U A P8 A U A A U G U U A U A U A C G U AA C G U A U A A U U U C G 60 P6b A U A G U G C G U G C A U A 240 G C A A U A U C U A A A Tetrahymena thermophila LSU rRNA A U G C U G GenBank# J01235 P2 U A A U Eucarya, Protoctista, Ciliophora (IC1) U G C G Jun 09, 1994 A U G C 40 G C C A A U GC Now you can see them in the original plot.

  10. 220 Output of sir_graph by D. Stewart and M. Zuker C U U U C A G C G G G C G G A A A A G C C U C G G C C 230 210 A U G G U C C 240 C G G C C U C C 200 U U U U C U Sometimes they C U A U C G are complicated. C U 250 G C U G Jiunn-Liang Chen & Carol W. Greider U C C 190 G A C Functional analysis of the pseudoknot U G U C C structure in human telomerase RNA (20 C U C A C PNAS 102:23 , pp 8080–8085 G U 260 A C G G C U A 180 U A U A U C C A G A U A G A C A 270 C A G U C G G U G 170 C A A U G G C C G U G 161 Human telomerase RNA (AF221907) pseudoknot

Recommend


More recommend