computation tree logic
play

Computation Tree Logic B. Srivathsan Chennai Mathematical Institute - PowerPoint PPT Presentation

Computation Tree Logic B. Srivathsan Chennai Mathematical Institute Model Checking and Systems Verification January - April 2016 1 / 35 Module 1: Tree behaviour of a transition system 2 / 35 { p 1 } { p 2 } s 0 s 1 Transition System s 3 s 2


  1. State formulae φ := true | p i | φ 1 ∧ φ 2 | ¬ φ 1 | E α | A α α : Path formula p i ∈ AP φ 1 , φ 2 : State formulae … Every state satisfies true … State satisfies p i if its label contains p i … State satisfies φ 1 ∧ φ 2 if it satisfies both φ 1 and φ 2 9 / 25

  2. State formulae φ := true | p i | φ 1 ∧ φ 2 | ¬ φ 1 | E α | A α α : Path formula p i ∈ AP φ 1 , φ 2 : State formulae … Every state satisfies true … State satisfies p i if its label contains p i … State satisfies φ 1 ∧ φ 2 if it satisfies both φ 1 and φ 2 … State satisfies ¬ φ if it does not satisfy φ 9 / 25

  3. State formulae φ := true | p i | φ 1 ∧ φ 2 | ¬ φ 1 | E α | A α α : Path formula p i ∈ AP φ 1 , φ 2 : State formulae … Every state satisfies true … State satisfies p i if its label contains p i … State satisfies φ 1 ∧ φ 2 if it satisfies both φ 1 and φ 2 … State satisfies ¬ φ if it does not satisfy φ … State satisfies E α if there exists a path starting from the state satisfying α 9 / 25

  4. State formulae φ := true | p i | φ 1 ∧ φ 2 | ¬ φ 1 | E α | A α α : Path formula p i ∈ AP φ 1 , φ 2 : State formulae … Every state satisfies true … State satisfies p i if its label contains p i … State satisfies φ 1 ∧ φ 2 if it satisfies both φ 1 and φ 2 … State satisfies ¬ φ if it does not satisfy φ … State satisfies E α if there exists a path starting from the state satisfying α … State satisfies A α if all paths starting from the state satisfy α 9 / 25

  5. When does a path in a tree satisfy a path formula ? . . . . . . . . . . . . . . . 10 / 25

  6. Path formulae α := φ | α 1 ∧ α 2 | ¬ α 1 | X α 1 | α 1 U α 2 | F α 1 | G α 1 φ : State formula α 1 , α 2 : Path formulae 11 / 25

  7. Path formulae α := φ | α 1 ∧ α 2 | ¬ α 1 | X α 1 | α 1 U α 2 | F α 1 | G α 1 φ : State formula α 1 , α 2 : Path formulae … Path satisfies φ if the initial state of the path satisfies φ 11 / 25

  8. Path formulae α := φ | α 1 ∧ α 2 | ¬ α 1 | X α 1 | α 1 U α 2 | F α 1 | G α 1 φ : State formula α 1 , α 2 : Path formulae … Path satisfies φ if the initial state of the path satisfies φ … Rest standard semantics like LTL 11 / 25

  9. A tree satisfies state formula φ if its root satisfies φ ∈ . . . . . . . . . . . . . . . 12 / 25

  10. … E F p 1 : Exists a path where p 1 is true sometime 13 / 25

  11. … E F p 1 : Exists a path where p 1 is true sometime … A F A G p 1 : 13 / 25

  12. … E F p 1 : Exists a path where p 1 is true sometime … A F A G p 1 : … In all paths, there exists a state where A G p 1 is true 13 / 25

  13. … E F p 1 : Exists a path where p 1 is true sometime … A F A G p 1 : … In all paths, there exists a state where A G p 1 is true … In all paths, there exists a state from which all paths satisfy G p 1 13 / 25

  14. … E F p 1 : Exists a path where p 1 is true sometime … A F A G p 1 : … In all paths, there exists a state where A G p 1 is true … In all paths, there exists a state from which all paths satisfy G p 1 … In all paths, there exists a state such that every state in the subtree below it contains p 1 13 / 25

  15. … E F p 1 : Exists a path where p 1 is true sometime … A F A G p 1 : … In all paths, there exists a state where A G p 1 is true … In all paths, there exists a state from which all paths satisfy G p 1 … In all paths, there exists a state such that every state in the subtree below it contains p 1 … A F G p 2 : In all paths, there exists a state from which p 2 is true forever 13 / 25

  16. … E F p 1 : Exists a path where p 1 is true sometime … A F A G p 1 : … In all paths, there exists a state where A G p 1 is true … In all paths, there exists a state from which all paths satisfy G p 1 … In all paths, there exists a state such that every state in the subtree below it contains p 1 … A F G p 2 : In all paths, there exists a state from which p 2 is true forever … A p 1 : 13 / 25

  17. … E F p 1 : Exists a path where p 1 is true sometime … A F A G p 1 : … In all paths, there exists a state where A G p 1 is true … In all paths, there exists a state from which all paths satisfy G p 1 … In all paths, there exists a state such that every state in the subtree below it contains p 1 … A F G p 2 : In all paths, there exists a state from which p 2 is true forever … A p 1 : … All paths satisfy p 1 13 / 25

  18. … E F p 1 : Exists a path where p 1 is true sometime … A F A G p 1 : … In all paths, there exists a state where A G p 1 is true … In all paths, there exists a state from which all paths satisfy G p 1 … In all paths, there exists a state such that every state in the subtree below it contains p 1 … A F G p 2 : In all paths, there exists a state from which p 2 is true forever … A p 1 : … All paths satisfy p 1 … All paths start with p 1 13 / 25

  19. … E F p 1 : Exists a path where p 1 is true sometime … A F A G p 1 : … In all paths, there exists a state where A G p 1 is true … In all paths, there exists a state from which all paths satisfy G p 1 … In all paths, there exists a state such that every state in the subtree below it contains p 1 … A F G p 2 : In all paths, there exists a state from which p 2 is true forever … A p 1 : … All paths satisfy p 1 … All paths start with p 1 … Same as p 1 ! 13 / 25

  20. E F A G ( red ) . . . . . . . . . . . . . . . 14 / 25

  21. A F A G ( red ) . . . . . . . . . . . . . . . 15 / 25

  22. E G E X ( red ) . . . . . . . . . . . . . . . 16 / 25

  23. E G E X ( red ) . . . . . . . . . . . . . . . 17 / 25

Recommend


More recommend