Combining biophysical and statistical methods for understanding neural codes Liam Paninski Department of Statistics and Center for Theoretical Neuroscience Columbia University http://www.stat.columbia.edu/ ∼ liam liam@stat.columbia.edu October 22, 2007 Support: NIH CRCNS award, Sloan Research Fellowship, NSF CAREER award.
The neural code Input-output relationship between • External observables x (sensory stimuli, motor responses...) • Neural variables y (spike trains, population activity...) Probabilistic formulation: p ( y | x )
Basic goal ...learning the neural code. Fundamental question: how to estimate p ( y | x ) from experimental data? General problem is too hard — not enough data, too many inputs x and spike trains y
Avoiding the curse of insufficient data Many approaches to make problem tractable: 1 : Estimate some functional f ( p ) instead e.g., information-theoretic quantities (Paninski, 2003) 2 : Select stimuli as efficiently as possible (Machens, 2002; Paninski, 2005; Lewi et al., 2006) 3: Fit a model with small number of parameters
Neural encoding models “Encoding model”: p θ ( y | x ). — Fit parameter θ instead of full p ( y | x ) Main theme: want model to be flexible but not overly so Flexibility vs. “fittability”
Multiparameter HH-type model — highly biophysically plausible, flexible — but very difficult to estimate parameters given spike times alone (figure adapted from (Fohlmeister and Miller, 1997))
Cascade (“LNP”) model — easy to estimate via correlation-based methods (Simoncelli et al., 2004) — but not biophysically plausible (fails to capture spike timing details: refractoriness, burstiness, adaptation, etc.)
Two key ideas 1. Use likelihood-based methods for fitting. — well-justified statistically — easy to incorporate prior knowledge, explicit noise models, etc. 2. Use models that are easy to fit via maximum likelihood — concave (downward-curving) functions have no non-global local maxima = ⇒ concave functions are easy to maximize by gradient ascent. Recurring theme: find flexible models whose loglikelihoods are guaranteed to be concave.
Filtered integrate-and-fire model � 0 � − g ( t ) V ( t ) + I DC + � � dV ( t ) = k · � x ( t ) + h ( t − t j ) dt + σdN t ; j = −∞ (Paninski et al., 2004b)
Model flexibility: Adaptation
The estimation problem (Paninski et al., 2004b)
First passage time likelihood P (spike at t i ) = fraction of paths crossing threshold for first time at t i (via Fokker-Planck, integral equation, or EM; (Paninski et al., 2004b; Paninski et al., 2007; Nikitchenko and Paninski, 2007))
Maximizing likelihood Maximization seems difficult, even intractable: — high-dimensional parameter space — likelihood is a complex nonlinear function of parameters Main result : The loglikelihood is concave in the parameters, no matter what data { � x ( t ) , t i } are observed. = ⇒ no non-global local maxima = ⇒ maximization easy by ascent techniques.
Application: retinal ganglion cells Preparation: dissociated macaque retina — extracellularly-recorded responses of populations of RGCs Stimulus: random “flicker” visual stimuli
Spike timing precision in retina RGC LNP IF 0 0.25 0.5 0.75 1 0.07 0.17 0.22 0.26 RGC rate (sp/sec) LNP 200 IF 0 1.5 variance (sp 2 /bin) 1 0.5 0 0 0.25 0.5 0.75 1 0.6 0.64 0.85 0.9 (Pillow et al., 2005)
Linking spike reliability and subthreshold noise (Pillow et al., 2005)
Likelihood-based discrimination Given spike data, optimal decoder chooses stimulus � x according to likelihood: p ( spikes | � x 1 ) vs. p ( spikes | � x 2 ). Using accurate model is essential (Pillow et al., 2005)
Example 2: decoding subthreshold activity Given extracellular spikes, what is most likely intracellular V ( t )? 10 0 −10 −20 V (mV) −30 −40 −50 −60 −70 ? −80 5.1 5.15 5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55 time (sec)
Computing V ML ( t ) Loglikelihood of V ( t ) (given LIF parameters, white noise N t ): � T �� 2 L ( { V ( t ) } 0 ≤ t ≤ T ) = − 1 � � ˙ V ( t ) − − gV ( t ) + I ( t ) dt 2 σ 2 0 Constraints: • Reset at t = 0: V (0) = V reset • Spike at t = T : V ( T ) = V th • No spike for 0 < t < T : V ( t ) < V th Quadratic programming problem: optimize quadratic function under linear constraints. Concave : unique global optimum.
Application: in vitro data Recordings: rat sensorimotor cortical slice; dual-electrode whole-cell Stimulus: Gaussian white noise current I ( t ) Analysis: fit IF model parameters { g,� k, h ( . ) , V th , σ } by maximum likelihood (Paninski et al., 2003; Paninski et al., 2004a), then compute V ML ( t )
Application: in vitro data true V(t) 0 V ML (t) −20 V (mV) −40 −60 1.04 1.05 1.06 1.07 1.08 1.09 1.1 1.11 1.12 1.13 −45 −50 −55 V (mV) −60 −65 −70 −75 1.04 1.05 1.06 1.07 1.08 1.09 1.1 1.11 1.12 1.13 time (sec) (Applications to spike-triggered average (Paninski, 2006a; Paninski, 2006b).)
Part 3: Back to detailed models Can we recover detailed biophysical properties? • Active: membrane channel densities • Passive: axial resistances, “leakiness” of membranes • Dynamic: spatiotemporal synaptic input
Spatiotemporal voltage recordings Djurisic et al, 2004
Conductance-based models Key point: if we observe full V i ( t ) + cell geometry, channel kinetics known + current noise is log-concave, then loglikelihood of unknown parameters is concave. Gaussian noise = ⇒ standard nonnegative regression (albeit high-d).
Estimating channel densities from V ( t ) (Huys et al., 2006)
Estimating channel densities from V ( t ) 0 −20 V −40 −60 50 summed currents dV/dt 0 −50 −100 20 40 60 80 100 Time [ms] conductance [mS/cm 2 ] 100 True Inferred 50 0 NaHH KHH Leak NaM KM NaS KAS
Estimating non-homogeneous channel densities and axial resistances from spatiotemporal voltage recordings
Estimating synaptic inputs given V ( t )
Estimating synaptic inputs given V ( t ) B A Synaptic conductances Channel conductances 120 True parameters max conductance [mS/cm 2 ] 1 (spikes and conductances) 100 Data (voltage trace) Inferred (MAP) spikes Inferred (ML) channel densities 80 Inh spikes | Voltage [mV] | Exc spikes 60 0 40 20 mV 20 −25 mV 0 HHNa HHK Leak MNa MK SNa SKA SKDR C 1 −70 mV 1 0 20 mV −25 mV −70 mV 1 0 0 1280 1300 1320 1340 1360 1380 1400 0 500 1000 1500 2000 Time [ms] Time [ms]
Estimating stimulus effects dV/dt = I channel + � k · � x ( t ) + σN t A 2 s 1 (t) 0 −2 B 20 0 −20 V −40 −60 C summed currents 150 100 dV/dt 50 0 −50 20 40 60 80 100 Time [ms] D E 120 4 True True 100 3.5 Inferred Inferred conductance 80 3 [mS/cm 2 ] filter 60 2.5 2 40 1.5 20 0 NaHH KHH Leak NaM KM NaS KAS 1 2 3 4 5 6 7 8 9 10
Dealing with incomplete observations: Kalman filter −59.5 V (mV) −60 −60.5 −59.6 E[V(t) | Y(0:t)] −59.8 V (mV) E[V(t) | Y(1:T)] −60 −60.2 −60.4 −60.6 est std (mV) 0.2 0.1 0 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 t (sec)
Smoothing given nonlinear dynamics — via particle filtering (Huys and Paninski, 2006)
Subsampling and noise
Inferring spike rates from calcium observations (Vogelstein et al., 2007)
Inferring spike rates from calcium observations
Conclusions Advantages of model-based approach: • Flexibility of generative probabilistic framework • Direct biophysical interpretability of estimated parameters • Connections to statistical decoding methods, optimal experimental design (Paninski et al., 2008) • Direct quantification of uncertainty Next steps: • Further applications to data • Further relaxation of assumptions
Collaborators Theory and numerical methods • Y. Ahmadian, S. Escola, G. Fudenberg, Q. Huys, J. Kulkarni, M. Nikitchenko, K. Rahnama, G. Szirtes, T. Toyoizumi, Columbia • E. Simoncelli, NYU • A. Haith, C. Williams, Edinburgh • M. Ahrens, J. Pillow, M. Sahani, Gatsby • J. Lewi, Georgia Tech • J. Vogelstein, Johns Hopkins Retinal physiology • E.J. Chichilnisky, J. Shlens, V. Uzzell, Salk Cortical in vitro physiology • B. Lau and A. Reyes, NYU
Recommend
More recommend