combined analysis method from sample to texture
play

Combined analysis method: from sample to texture Aline Dellicour 1,2 - PowerPoint PPT Presentation

Combined analysis method: from sample to texture Aline Dellicour 1,2 , Bndicte Vertruyen 2 , Mark Rikel 3 , Luca Lutterotti 4 , rotti 4 , Bachir Ouladdiaf 5, Daniel Chateigner 1 1 CRISMAT, University of Caen 4 University of trento 2 LCIS,


  1. Combined analysis method: from sample to texture � Aline Dellicour 1,2 , Bénédicte Vertruyen 2 , Mark Rikel 3 , Luca Lutterotti 4 , rotti 4 , Bachir Ouladdiaf 5, Daniel Chateigner 1 1 CRISMAT, University of Caen 4 University of trento 2 LCIS, University of Liège 5 Institut Laue-Langevin 3 Nexans SuperConductors, Hürth (Germany)

  2. High temperature superconductors T (K) Normal T c Critical temperature (Tc) Superconductor Critical current (Ic) H (Am -1 ) Critical magnetic field (Hc) 0 H c J c J (Am -2 )

  3. Bi 2 Sr 2 Ca n-1 Cu n 2O 2n+4 phase Bi-2201 Bi-2212 Bi-2223 Formula Bi 2 Sr 2 CuO 6 Bi 2 Sr 2 CaCu 2 O 8 Bi 2 Sr 2 Ca 2 Cu 3 O 10 Discovery Michel, C. et al. Z. Maeda, H. et al. Jpn. J. Maeda, H. et al. Jpn. J. Phys. B 68, 421–423 Appl. Phys. 27, Appl. Phys. 27, (1987) L209(1988) L209(1988) Structure T c 20K 85K 110K Remarks Non stable in air

  4. Bi 2 Sr 2 CaCu 2 O 8 phase O Sr Bi Ca Cu c b a

  5. Bi 2 Sr 2 CaCu 2 O 8 phase O Sr Bi Ca Cu c b a

  6. Superconducting fault current limiter I<Ic I<Ic I>Ic R≈0 R>0 R � 0

  7. Superconducting fault current limiter I<Ic I<Ic I<Ic I>Ic R≈0 R≈0 R>0 R � 0

  8. Superconducting fault current limiter I<Ic I<Ic I>Ic I>Ic R≈0 R>0 R>0 R � 0

  9. Superconducting fault current limiter Autonomously Automatically I<Ic I<Ic I>Ic I<Ic R≈0 R>0 R � 0 R � 0

  10. Bulk samples are synthesized by the melt cast process Metallic oxides SrSO 4 T �

  11. Bulk samples are synthesized by the melt cast process Metallic oxides SrSO 4 T � Preheated

  12. Bulk samples are synthesized by the melt cast process Metallic oxides SrSO 4 T � Preheated Annealing

  13. High Jc values are reached Electric field ( µ V/cm) 30 J c (77K) = 1200 A/cm 2 20 10 J (A/cm 2 ) 0 0 500 1.000 1.500

  14. Combined analysis method X-Rays (near-surface) Electrons Neutrons (microscopic) (macroscopic) Combined analysis

  15. Combined analysis method X-Rays (near-surface) Electrons Neutrons (microscopic) (macroscopic) Combined analysis

  16. Electron backscatter diffraction (EBSD)

  17. Combined analysis method X-Rays (near-surface) Electrons Neutrons (microscopic) (macroscopic) Combined analysis

  18. INEL-CRISMAT

  19. Combined analysis method X-Rays (near-surface) Electrons Neutrons (microscopic) (macroscopic) Combined analysis

  20. From sample to data Neutron beam 2 � Rietveld refinement with Maud

  21. Inner region Resin ����

  22. Center region � � Resin ����

  23. Outer region � � Resin � ����

  24. Porous region � � Resin � ����

  25. Higher supercurrents flow through the center part � � Resin � ����

  26. � � X Y Z Untextured Partially c textured b a

  27. i X Y Z c Untextured Partially c textured c

  28. i X Y Z c X Untextured Partially c textured c

  29. Conclusions � Melt casting is easy to implement � Combine analysis is applicable to our samples � Two main orientations for texture Untextured Partially textured

  30. Prospects Varying: � Sample shape � Synthesis parameters � Oxygen content

  31. Prospects Varying: � Sample shape � Synthesis parameters � Oxygen content � Improving Jc

  32. Thank you for your attention Contact: a.dellicour@ulg.ac.be

Recommend


More recommend