colour evolution
play

Colour Evolution Patrick Kirchgaeer (KIT) with S. Gieseke (KIT), - PowerPoint PPT Presentation

Colour Evolution Patrick Kirchgaeer (KIT) with S. Gieseke (KIT), S.Pltzer (Vienna), A. Siodmok (Cracow) Lund, 27.2.19 Based on JHEP11(2018)149 Patrick Kirchgaeer Context/Motivation/Goals How do we decide which quarks to connect?


  1. Colour Evolution Patrick Kirchgaeßer (KIT) with S. Gieseke (KIT), S.Plätzer (Vienna), A. Siodmok (Cracow) Lund, 27.2.19 Based on JHEP11(2018)149 Patrick Kirchgaeßer

  2. Context/Motivation/Goals How do we decide which quarks to connect? [Pre-confinement as a property of pQCD, Amati, Veneziano] Interplay of hard & soft QCD Patrick Kirchgaeßer

  3. Formalism: Perturbative colour evolution QCD scattering amplitudes are vectors in spin and colour space With the colour flow basis The bare amplitude can be related to the renormalized amplitude as |M ( { p } , µ 2 ) i = Z − 1 ( { p } , µ 2 , ✏ ) | ˜ M ( { p } , ✏ ) i and the renormalization constant Z is an operator in the space of colour structures. Interplay of hard & soft QCD Patrick Kirchgaeßer

  4. Formalism: Perturbative colour evolution The structure of Z governed by RGE µ 2 d d µ 2 |M ( { p } , µ 2 ) i = Γ ( { p } , µ 2 ) |M ( { p } , µ 2 ) i Where the pre factor is called soft anomalous dimension Γ ( { p } , µ 2 ) = − Z − 1 ( { p } , µ 2 , ✏ ) µ 2 @ @ µ 2 Z ( { p } , µ 2 , ✏ ) The evolution equation can be solved by |M ( { p } , µ 2 ) i = U ( { p } , µ 2 , { M 2 ij } ) |H ( { p } , Q 2 , { M 2 ij } ) i where (Z M 2 ) dq 2 αβ q 2 Γ ( { p } , q 2 ) U = exp µ 2 Final colour structure depends on the soft anomalous dimension matrix Interplay of hard & soft QCD Patrick Kirchgaeßer

  5. Formalism: Perturbative colour evolution Conjecture for soft anomalous dimension matrix [Becher, Neubert, Phys. Rev. Lett. 102 (2009)] γ cusp ( α s ) ln( µ 2 T i · T j X X γ i ( α s ) Γ = ) + 2 − s ij { i,j } i At 1-loop: γ cusp = α s / 2 π γ i Neglect (does not change the color structure) X X X Γ = Ω i ¯ Ω ij T i · T j + Ω ¯ j T i · T j + j T ¯ i · T ¯ i ¯ j i ≤ j i<j i<j Z M 2 ! M 2 dq 2 αβ α s αβ Ω αβ = ln − i π With q 2 q 2 2 π µ 2 ! 2 ln 2 M 2 M 2 1 = α s αβ αβ − i π ln q 2 µ 2 2 π Interplay of hard & soft QCD Patrick Kirchgaeßer

  6. Formalism: Perturbative colour evolution Putting everything together 0 !1 2 ln 2 M 2 µ 2 − i π ln M 2 1 α s @X ij ij � { p } , µ 2 , { M 2 � ij } T i · T j U = exp A µ 2 2 π i 6 = j Starting point for evolution of a colour flow { p } , µ 2 , { M 2 � � A τ → σ = h σ | U ij } | τ i . Define reconnection probability |A τ → σ | 2 P τ → σ = P ρ |A τ → ρ | 2 Interplay of hard & soft QCD Patrick Kirchgaeßer

  7. Example: Two cluster evolution Evolution in colour flow basis (compact notation) 1 1 � ¯ ¯ � 1 2 ¯ ... n ¯ ¯ � 1 2 ... δ ¯ 2 | σ i = = δ 1 δ n � 1 2 n ... n � Each index runs over N colours 2 cluster system (4 legs) 2 di ff erent color flows 1 1 1 1 2 2 1 1 1 1 2 2 States in color flow notation 2 2 ✓ 1 ◆ ✓ 0 ◆ � ¯ ¯ � 1 2 | 12 i = | 21 i = � | 2 1 i = | 1 2 i � 0 1 1 2 � [Plätzer, EPJC 74 (2014) 6] [Martinez, De Angelis, Forshaw, Plätzer, Seymour, JHEP 05 (2018) 044] Interplay of hard & soft QCD Patrick Kirchgaeßer

  8. Example: Two cluster evolution Start evolution with initial colour flow | 12 i ✓ U 11 ◆ ✓ 1 ◆ U 21 | τ i = U | 12 i = = U 11 | 12 i + U 12 | 21 i U 12 U 22 0 Project out all possible color flows h 12 | τ i = U 11 h 12 | 12 i + U 12 h 12 | 21 i h 21 | τ i = U 11 h 21 | 12 i + U 12 h 21 | 21 i Where [Martinez, De Angelis, Forshaw, Plätzer, Seymour, 1802.08531] h σ | τ i = N m − #transpositions( σ , τ ) Define probability for alternative colour flow (reconnection probability) | h 21 | τ i | 2 P = | h 12 | τ i | 2 + | h 21 | τ i | 2 Interplay of hard & soft QCD Patrick Kirchgaeßer

  9. In short • Study small systems (2-5 clusters = 4-10 coloured legs) (toy mc) • Consider iterated soft gluon exchange between any two legs to all orders • Evolve colour structure of legs to decide which quarks to connect • Di ff erent input for hadronization (cluster model) 1 Interplay of hard & soft QCD Patrick Kirchgaeßer

  10. Numerical results • Toy Monte Carlo for up to 5 clusters • 2 phase space algorithms (RAMBO,UA5 type model) to create quark kinematics 0 . 035 Initial clusters Initial clusters Final clusters Final clusters 10 − 1 0 . 030 0 . 025 10 − 2 0 . 020 N N 0 . 015 10 − 3 0 . 010 10 − 4 0 . 005 0 . 000 0 500 1000 1500 2000 0 500 1000 1500 2000 M [GeV] M [GeV] RAMBO high mass clusters (unphysical) UA5 with random initial connections Interplay of hard & soft QCD Patrick Kirchgaeßer

  11. Numerical results • Change in Delta Y between the constituent quarks Initial clusters 0 . 05 Initial clusters Initial clusters 0 . 8 Final clusters Final clusters Final clusters 800 0 . 7 0 . 04 0 . 6 600 0 . 5 0 . 03 N N N 0 . 4 400 0 . 02 0 . 3 0 . 2 0 . 01 200 0 . 1 0 . 00 0 . 0 0 . 0 2 . 5 5 . 0 7 . 5 10 . 0 12 . 5 15 . 0 17 . 5 0 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 ∆ Y ∆ Y ∆ Y RAMBO UA5 with random initial connections Algorithm produces results attributed to properties of CR (e.g reduction of invariant cluster masses, connects quarks which are closer in spacetime) Interplay of hard & soft QCD Patrick Kirchgaeßer

  12. Numerical results • Physical cluster masses O(GeV) initial µ = 1 GeV 10 1 µ = 1 GeV µ = 0 . 01 GeV 0 . 4 µ = 0 . 01 GeV 10 0 0 . 3 10 − 1 N N 0 . 2 10 − 2 0 . 1 10 − 3 0 . 0 0 1 2 3 4 5 6 7 − 2 . 0 − 1 . 5 − 1 . 0 − 0 . 5 0 . 0 0 . 5 1 . 0 ∆ if Mass[GeV] Colour length drop ! 2 ln 2 M 2 M 2 1 P M 2 Ω αβ = α αβ αβ − i π ln µ 2 µ 2 f 2 π P M 2 ∆ if = 1 − i Interplay of hard & soft QCD Patrick Kirchgaeßer

  13. Bottleneck for full colour flow evolution of a LHC event Explicit form of soft anomalous dimension for the two cluster evolution Needs to be exponentiated For 5 clusters 120x120 matrix n! colourflows Exponentiated matrix here Rowland, Todd and Weisstein, Eric W. "Matrix Exponential." From MathWorld --A Wolfram Web Resource. http://mathworld.wolfram.com/MatrixExponential.html Interplay of hard & soft QCD Patrick Kirchgaeßer

  14. Baryonic configurations • Severe underestimation of produced baryons (strangeness also) at LHC (ALICE, ATLAS, CMS) • Improved description with new production mechanisms possible [Pythia, (Christiansen, Skands) JHEP08 (2015) 003] [Herwig, (Gieseke, PK, Plätzer) Eur.Phys.J. C78 (2018) 99] • Herwig: Baryonic clusters Can construct a baryonic state (3 quarks, 3 antiquarks) | [ ijk ] i = 1 k = 1 K ✏ ijk ✏ ¯ K ( | ijk i � | ikj i � | jik i + | jki i + | kij i � | kji i ) j ¯ i ¯ Calculate baryonic reconnection probability as before where the amplitude is { p } , µ 2 , { M 2 � � A τ → B ijk ⊗ ˜ σ ijk = h B ijk | ⌦ h ˜ σ ijk | U ij } | τ i Interplay of hard & soft QCD Patrick Kirchgaeßer

  15. Probabilities RAMBO 0 . 12 RAMBO Random UA5 UA5 Random 0 . 10 P Baryonic 0 . 08 0 . 06 0 . 04 0 . 02 3 4 5 Number of Clusters Reasonable values with clear dependence on number of clusters Interplay of hard & soft QCD Patrick Kirchgaeßer

  16. Baryonic reconnection probabilities in detail 3 clusters 10 − 1 4 clusters 5 clusters 10 − 2 N 10 − 3 10 − 4 10 − 5 0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 P Baryonic Tail towards higher values -> preferred kinematic configuration? Interplay of hard & soft QCD Patrick Kirchgaeßer

  17. Baryonic reconnection probability for 3 cluster evolution median 0 . 5 0 . 4 P Baryonic 0 . 3 0 . 2 0 . 1 0 . 0 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0 ( h ∆ R B i + h ∆ R ¯ B i ) / 2 Clear kinematic dependence Interplay of hard & soft QCD Patrick Kirchgaeßer

  18. Independent subsystems • No 1/N dependence -> independent subsystems 4 clusters 5 clusters 14 8 12 10 6 N 8 N 6 4 4 2 2 0 0 0 1 2 3 0 1 2 3 4 transpositions transpositions E ff ects of perturbative colour flow evolution may be factorizable -> allows to implement in MCEG Interplay of hard & soft QCD Patrick Kirchgaeßer

  19. Summary • Toy Monte Carlo for full Colour Flow Evolution for up to 5 clusters • Evolution into baryonic states possible • Strong support for geometric/kinematic models • Future: Study evolution of independent subsystems in Herwig and see where this approach is applicable Interplay of hard & soft QCD Patrick Kirchgaeßer

  20. Backup Backup Backup Backup Backup Backup Patrick Kirchgaeßer

  21. Backup Semi-hard MPI event only, random evolution of 10 clusters, B(10,5) = 252 3 cluster evo No veto of 4000 4 cluster evo colour flows 5 cluster evo 3500 sum cluster mass [GeV] 3000 2500 2000 1500 1000 500 0 0 50 100 150 200 250 iterations Interplay of hard & soft QCD Patrick Kirchgaeßer

  22. Backup Extreme LHC event, iterated random evolution of 82 (very light) clusters, B(82,5) = 27285336 No veto of 3 cluster evo 1800 colour flows 4 cluster evo 5 cluster evo 1600 sum cluster mass [GeV] 1400 1200 1000 800 600 400 0 50 100 150 200 250 iterations Interplay of hard & soft QCD Patrick Kirchgaeßer

  23. Perturbative colour flow evolution Colour charge operators T_i : [Catani, Seymour, Nucl. Phys. B485 (1997) 291-419 ] Colour charge products given by T i · T j = 1 i − 1 j δ j 0 i δ j 0 2( δ i 0 N δ i 0 j ) In the large N limit corresponds to exchange of colour between legs i,j In color flow basis: Matrices in colour space which change the colour structure Patrick Kirchgaeßer

Recommend


More recommend