collaboration atlas cppm ifac um2
play

Collaboration ATLAS_CPPM/IFAC_UM2 Probing the nature of Electroweak - PowerPoint PPT Presentation

Collaboration ATLAS_CPPM/IFAC_UM2 Probing the nature of Electroweak Symmetry Breaking at the LHC with the ATLAS Detector PESBLADe G. Moultaka 1 IFAC-Montpellier CNRS & University of Montepllier II Marseille Oct. 29 15 [ct


  1. Collaboration ATLAS_CPPM/IFAC_UM2 Probing the nature of Electroweak Symmetry Breaking at the LHC with the ATLAS Detector PESBLADe G. Moultaka 1 IFAC-Montpellier CNRS & University of Montepllier II Marseille Oct. 29 ’15 [côté montpellierain: Michele Frigerio 1 , Cyril Hugonie 2 , Jean-Loïc Kneur 1 , Julien Lavalle 2 ] 1 Laboratoire Charles Coulomb (L2C) 2 Laboratoire Univers & Particules de Montpellier (LUPM)

  2. 1/ quick reminder of IFAC expertise and possible involvement 2/ ATLAS/CPPM expertise and possible involvement 3/ CPPM/IFAC (OCEVU) Postdoc + (OCEVU) PhD project 4/ quick overview of EW effective operators zoology 5/ Heavy colored states + Higgs(->bb) "final states" back to some pending questions since the 16-17-may meeting 5.1/composite Higgs 5.2/susy 5.3/ model-independent effective approach 6/ generators and a roadmap involving the Postdoc 7/ the Postdoc and PhD projects

  3. 1/ quick reminder of IFAC expertise and possible involvement [Michele Frigerio, Cyril Hugonie, Jean-Loïc Kneur, Julien Lavalle, G. M.] + Felix Brümmer susy: MSSM, NMSSM (specific models, mSUGRA, GMSB, AMSB,etc. spectrum calc. authors, SuSpect2,3 (C++), NMSTools) composite Higgs: "SILH-like", GUT scenarios, heavy top-like states,... dark matter: candidates, relic density, DD & ID constraints,...) 2/ ATLAS/CPPM expertise and possible involvement [Yann Coadou] H → bb , τ [Cristinel Diaconu] PDF + multi Ws [Lorenzo Feligioni] top, trigger, b-tagging! [Yanwen Liu (ext.) + Monnier] Generators + TGCs [Steve Muanza] RPV susy + Generators [Mossadek Talby] top, b-tagging [Laurent Vacavant] top, H → bb , b-tagging 3/ CPPM/IFAC Postdocs: Sara Diglio, Lorenzo Basso CPPM/IFAC PhDs: Venugopal Ellajosyula, Rima El Kosseifi.

  4. stop decays in RPV SUSY scenarios R-Parity Violation in t ¯ tH Final States Sara Diglio, 1 Lorenzo Feligioni, 1 and Gilbert Moultaka 2 1 Centre de Physique des Particules de Marseille (CPPM), UMR 7346 IN2P3-Univ. Aix-Marseille, Marseille, F-France 2 Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Universit de Montpellier, Montpellier, F-France (Dated: October 29, 2015) Abstract We study signatures of R-parity violation originating from hadronically decaying light top squarks at the LHC. It is shown that higher jet multiplicities scan typically smaller R-parity violating couplings, down to tiny values where the R-parity conserving experimental bounds set in due to long-lived lightest supersymmetric particles. This suggests a general search strategy involv- ing different final states with heavy- and light-jets or leptons that would allow a more complete interpretation of the signal or of mass versus coupling exclusion limits. We illustrate the case with some benchmark points in the model independent setting of the low-energy phenomenological MSSM and discuss signal versus background issues stressing the similarity with the t ¯ tH ( → b ¯ b ) final states. PACS numbers:

  5. stop decays in RPV SUSY scenarios ◮ R-parity concerving SUSY seems decreasingly natural ◮ if SUSY is around → a light stop (cf. 125GeV Higgs mass) ◮ if R-parity violated present experimental limits much weaker.

  6. stop decays in RPV SUSY scenarios lepton number violation, W � L = 1 L i . ˆ 2 λ ijk ˆ L i . ˆ L j ˆ E c k + λ ′ ijk ˆ Q j ˆ D c k + µ i ˆ L i . ˆ H 2 baryon number violation, W � B = 1 D β c D γ c 2 λ ′′ ijk ˆ U α c ˆ ˆ k ǫ αβγ i j λ ijk = − λ jik and λ ′′ ijk = − λ ′′ ikj ...+ corresonding soft breaking parameters. → unstable MSSM LSP!

  7. Assumptions (i) λ ′′ 33 i , i = 1 , 2 are the only non-vanishing RPV couplings. (ii) the light part of the SUSY spectrum is composed of one stop, one chargino, one neutralino and the lightest CP-even Higgs. (iii) the RPV-MSSM-LSP is the lightest neutralino. (iv) all other SUSY and Higgs particles, except possibly for the gluino, are assumed to be too heavy to be produced at the LHC. m ˜ t ≥ m χ + ≥ m χ 0 > m t and for the present study m χ + ≈ m χ 0 m ˜ t − m χ 0 < m t m ˜ t − m χ + > m b

  8. ◮ stop production at the LHC: t ¯ pp → ˜ ˜ t mainly through gluon fusion processes. ◮ each stop can decay into one of the three channels: λ ′′ ˜ b t 33i s , d (a) b λ ′′ ˜ b t 33i χ + t ∗ ˜ s, d (b) b λ ′′ b 33i b ˜ t ∗ ˜ s, d t b χ + χ 0 t W f 1 W ∗ f 1 ′ f f ′ (c)

  9. ❍❍❍❍❍ ˜ t ˜ χ + - / t - / R p R p R p -like ¯ ˜ t ❍ ˜ t - / R p 2b2j 4b2j 1t3b2j χ + - / R p 6b2j 1t5b2j R p -like 2t4b2j ◮ all present LHC experimental limits consider only the (a) channel decays. (e.g. m ˜ t � 300 GeV , indep. of λ ” 33 i ). ◮ the main message of our study: higher b+jet multiplicity final states scan lower values of λ ” 33 j ! 2t4b2j 1t5b2j 6b2j 4b2j 2b2j ✲ < > λ ′′ ∼ 10 − 5 ∼ 10 − 4 ∼ 10 − 3 ∼ 10 − 2 ∼ 10 − 1 33 i

  10. Narrow Width Approximation ? ◮ 2 b 2 j t ¯ s ) × Br (¯ σ ( pp → ¯ t → ¯ b ¯ s bs ) ≃ σ ( pp → ˜ ˜ t ) × Br (˜ b ¯ ˜ t → bs ) ◮ 6 b 2 j t ¯ bb ) × Br (¯ σ ( pp → ¯ s ¯ bb bsb ¯ b ) ≃ σ ( pp → ˜ ˜ t ) × Br (˜ t → ¯ s ¯ ˜ t → bsb ¯ b ¯ b ¯ b ) ◮ 2 t 4 b 2 j ... t ¯ sb ... ) × Br (¯ σ ( pp → t ¯ sb ¯ tsb ¯ b ... ) ≃ σ ( pp → ˜ ˜ t ) × Br (˜ t → ¯ ˜ t → bs ¯ b ¯ b ¯ b ... ) ◮ + all the other mixed final states

  11. Narrow Width Approximation ? → assuming the NWA at all the stages of the (on-shell) cascade decays one obtains: ◮ 2b2j r 2 1 × ( λ ′′ 332 ) 4 t ¯ σ ( pp → 2 b 2 j ) ≃ σ ( pp → ˜ ˜ t ) × 1 + r 1 × ( λ ′′ 332 ) 2 � 2 � ◮ 6b2j r 2 2 × ( λ ′′ 332 ) 4 t ¯ σ ( pp → 6 b 2 j ) ≃ σ ( pp → ˜ ˜ t ) × 332 ) 2 � 2 � 332 ) 2 � 2 1 + r 1 × ( λ ′′ 1 + r 2 × ( λ ′′ � ◮ 2t4b2j... 1 t ¯ σ ( pp → 2 t 4 b 2 j ... ) ≃ σ ( pp → ˜ ˜ t ) × 332 ) 2 � 2 � 332 ) 2 � 2 1 + r 1 × ( λ ′′ 1 + r 2 × ( λ ′′ � ◮ ...+ all the other mixed final states t → ¯ Γ(˜ b ¯ s ) [ taken at λ ′′ r 1 332 = 1 ] (0.1) ≡ Γ(˜ t → χ + b ) Γ( χ + → ¯ s ¯ Γ( χ + → ¯ s ¯ b ¯ b ¯ b ) b ) [ taken at λ ′′ r 2 = 332 = 1 ] (0.2) ≡ bf 1 ¯ 2 ¯ 2 ¯ Γ( χ + → ¯ s ¯ f ′ 1 f ′ Γ( χ + → χ 0 f ′ b ¯ f 2 ) f 2 ) N.B. when λ ′′ 332 ≪ 1 the RPC-like final states dominate!

  12. setting the tools from scratch the R-parity violating MSSM has been generated by Sara through SARAH → SPheno → MD5

  13. benchmark points 1 2 tan β 10 M 1 2.5 TeV M 2 1.5 TeV M 3 1.7 TeV m ˜ 2 TeV Q m ˜ 570 GeV 964 GeV tR m ˜ bR = m ˜ uR = m ˜ dR = m ˜ eR = m ˜ q = m ˜ 3 TeV l T t -2100 GeV -2150 GeV ( m A ) in 2.5 TeV µ 400-650 GeV 750-1000 GeV λ ′′ 10 − 7 − 10 − 1 10 − 7 − 10 − 1 33 i benchmark points 1 2 m ˜ ∼ 600 GeV ∼ 1 TeV t m χ + ∼ 400-650 GeV ∼ 750-1000 GeV m χ 0 ∼ 400-650 GeV ∼ 750-1000 GeV m ˜ t − m χ 0 ∼ 5 - 194 GeV ∼ 1 - 239 GeV m h 0 ∼ 125 GeV m A ≈ m H 0 ≈ m H ± ∼ 2.5 TeV M ˜ ∼ 1.87 TeV g M ˜ t 2 ≈ M ˜ ∼ 2 TeV b 1 M ˜ b 2 ≈ M ˜ u 1 , 2 ≈ M ˜ ∼ 3 TeV d 1 , 2 M ˜ l 1 , 2 , M ˜ ∼ 3 TeV ν 1 , 2 3 − 3.3 × 10 − 11 3.2 − 3.3 × 10 − 11 ( g − 2 ) µ 5.7 − 5.9 × 10 − 5 ∼ 5.5 × 10 − 5 δρ BR ( B → X s γ ) / BR ( B → X s γ ) SM 0.89 − 0.92 0.95 − 0.96 BR ( B 0 3.36 − 3.39 × 10 − 9 3.38 − 3.40 × 10 − 9 s → µµ ) 1.08 − 1.09 × 10 − 10 ∼ 1.09 × 10 − 10 BR ( B 0 d → µµ )

  14. [pb] 1 [pb] 1 − 2 − 2 10 10 X X − 5 − 5 10 10 → → ~ ~ t t ~ t − 8 ~ t − 8 10 10 → → pp pp − 11 − 11 10 10 σ σ − 14 − 14 10 10 − 17 − 17 10 10 − 20 − 20 10 10 ~ ~ ~ ~ Decays: t t → X Decays: t t → X − 23 − 23 10 2b2j 10 2b2j 4b2j 4b2j − 26 − 26 10 10 6b2j 6b2j 1t5b2j 1t5b2j − 29 − 29 10 10 2t4b2j 2t4b2j − 7 − 6 − 5 − 4 − 3 − 2 − 1 − 7 − 6 − 5 − 4 − 3 − 2 − 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ’’ ’’ λ λ 33i 33i 1 1 [pb] [pb] − 2 − 2 10 10 X X − 5 − 5 10 10 → → ~ ~ t t ~ t − 8 ~ t − 8 10 10 → → pp pp − 11 − 11 10 10 σ σ − 14 − 14 10 10 − 17 − 17 10 10 − 20 − 20 10 10 ~ ~ ~ ~ Decays: t t → X Decays: t t → X − 23 − 23 10 2b2j 10 2b2j 4b2j 4b2j − − 10 26 10 26 6b2j 6b2j 1t5b2j 1t5b2j − 29 − 29 10 10 2t4b2j 2t4b2j − 7 − 6 − 5 − 4 − 3 − 2 − 1 − 7 − 6 − 5 − 4 − 3 − 2 − 1 10 10 10 10 10 10 10 10 10 10 10 10 10 10 ’’ ’’ λ λ 33i 33i Figure : stop-anti-stop production and decay cross-sections at √ s = 13TeV, for 4 , 6 , 8 , 10 , 12jets or jets+leptons final states, versus λ ′′ 33 i ; m ˜ t = 1TeV and m ˜ t − m χ + = 50 , 100 , 200 , 250GeV.

Recommend


More recommend