climate modeling for global warming projection at the mri
play

Climate Modeling for Global Warming Projection at the MRI Akira - PowerPoint PPT Presentation

Climate Modeling for Global Warming Projection at the MRI Akira Noda and MRI-CGCM modeling group Meteorological Research Institute Transient runs w ith MRI-CGCMs Dow nscaling w ith MRI regional climate models Earth system modeling


  1. Climate Modeling for Global Warming Projection at the MRI Akira Noda and MRI-CGCM modeling group Meteorological Research Institute • Transient runs w ith MRI-CGCMs • Dow nscaling w ith MRI regional climate models • Earth system modeling for the carbon cycle and chemical mass transport

  2. Climate Modeling at MRI Global AGCM 20km Chemical Mass Transport Ozone CMT Aerosol CMT Carbon Cycle Ice Sheet Cloud and Resolving Glacier Regional Climate Model 5km Asian Regional Coupled Regional Global Climate model Climate Model MRI-CGCM2 60km 20km/20km 300km/250km

  3. • Feature MRI-CGCM1 MRI-CGCM2 • Atmospheric component Horizontal resolution 5 ° (long.) x 4 ° (lat.) T42 (~2.8 ° x 2.8 ° ) • • Layers (top) 15 (1 hPa) 30 (0.4 hPa) • Solar radiation Lacis and Hansen (1974) Shibata and Uchiyama (1992) • (SW) H 2 O, O 3 H 2 O, O 3 , CO 2 , O 2 aerosol • Long wave radiation Shibata and Aoki (1989) Shibata and Aoki (1989) • (LW) H 2 O, CO 2 , O 3 H 2 O, CO 2 , O 3 , CH 4 , N 2 O Convection Arakawa and Schubert (1974) Prognostic Arakawa-Schubert • • Randall and Pan (1993) • Planetary Boundary Bulk layer (Tokioka et al., 1988) Mellor and Yamada (1974) • Layer (PBL) • Gravity wave drag Palmer et al. (1986) Iwasaki et al. (1989) • Rayleigh friction Rayleigh friction • Cloud type Penetrative convection, Penetrative convection • Middle-level convection, • Large-scale condensation, Large-scale condensation • stratus in PBL • Cloudiness Saturation Function of relative humidity • Cloud overlap Random for nonconsecutive clouds, Random + correlation • 0.3 for convective clouds • Cloud water content Function of pressure and Function of temperature • temperature • Land process 4-layer diffusion model 3-layer simple biosphere (SiB)

  4. • Feature MRI-CGCM1 MRI-CGCM2 • Oceanic component Horizontal resolution 2.5 ° (long) x 2 ° to 0.5 ° (lat) • • Layers (min. thickness) 21 (5.2 m) 23 (5.2 m) H. visc. 2.0 x 10 5 m 2 s –1 H. visc. 1.6 x 10 5 m 2 s –1 • Eddy viscosity V. visc. 1 x 10 –4 m 2 s –1 V. visc. 1 x 10 –4 m 2 s –1 • • Eddy mixing Horizontal-vertical mixing Isopycnal mixing • + Gent and McWilliams (1990) H. diff. 5.0 x 10 3 m 2 s –1 Isopycnal 2.0 x 10 3 m 2 s –1 • Diapycnal 1.0 x 10 –5 m 2 s –1 V. diff. 5.0 x 10 –5 m 2 s –1 • • Vertical viscosity and Mellor and Yamada (1974, 1982) • diffusivity • • Sea ice Mellor and Kantha (1989) • • Atmosphere-ocean coupling • Coupling interval 6 hours 24 hours • Flux adjustment Heat, salinity Heat, salinity + wind stress (in the equatorial band 12 ° S to 12 ° N) •

  5. IPCC SRES and Stabilization Scenarios

  6. A2 A1B B2 MRI-CGCM2.3

  7. Surface Air Temp. Change (2071-2100) – (1961-1990))- ( 1961~ 1990 ) � 変化パタ ーンに大き な差は見ら れない。 MRI-CGCM2.3

  8. Spatial patterns of Global Warming and Natural Variability MRI-CGCM Due to CO2 increase Due to El Nino 大 - 小 +

  9. Spatial patterns of Global Warming and Natural Variability Had-CGCM Due to CO2 increase Due to El Nino - 小 大 +

  10. Spatial patterns of Global Warming and Natural Variability GFDL-CGCM Due to CO2 increase Due to El Nino - 小 + 大

  11. Mechanism of ENSO-like Change Walker circulation Meehl and Washington, 1996 Kitoh et al, Knutson and Manabe, 1999 EAST WEST 1995,1998 WARM Cane et al, 200 m 1997 PERU COLD INDONESIA ENSO-like Change Mechanism of ENSO

  12. Mechanism of AO-like Change Temp. dependence stronger snow/albedo snow-ice melt of moist adiabaitic feedback near the troughs stable stratification laps rate Noda et al. (1996) Manabe and Wetherald (1975)

  13. Possible global warming patterns suggested by CGCMs Observed trend

  14. Comparison between Simulated AO-like and ENSO-like Changes El Niño El Niño El Niño La Niña SO: La Niña SO ? CCSR/NIES ECHAM3/LSG AO HadCM3 ECHAM4/OPYC3 MRI1 GFDL15 CCCma Non- CSIRO AO GFDL/R30 HadCM2 IPSL MRI2 NCAR

  15. Climate Modeling at MRI Global AGCM 20km Chemical Mass Transport Ozone CMT Aerosol CMT Carbon Cycle Ice Sheet Cloud and Resolving Glacier Regional Climate Model 5km Asian Regional Coupled Regional Global Climate model Climate Model MRI-CGCM2 60km 20km/20km 300km/250km

  16. Carbon Cycle Model (included in MRI-CGCM) Atmosphere NPP (Temp., Precipitation) insolation pCO 2 air ∆ pCO 2 × exchange coeff. m u i r b i O 2 saturation l i leaf u q e pCO 2 sea l a c i surface layer m DIC e h c branch 1 y r (60m) Alkalinity 1 0 y r 9.5 stem 16 P h o s p h a t e 19 5 0 y r e Ocean t N N a e e 138 h w w O2 p P P s o r r o o h d d P u u litter c c t t × i i n o o o i 106 t n n a l ~ ~ o s n I 1 root 1 y r P a r t i c u l a t e O r g a n i c CaCO 3 Advection and n M a t t e r o i Diffusion 1 0 y r t r a e r i by OGCM s p p s e (z/100m) − 0.9 d e e p i r r 138 a r O2 humus e l a y e r t i m o Terrestrial Biosphere n 1 i P h o s p h a t e n e 5 0 y r d r a i e ( − z/3500m) s l i 16 19 s z o Alkalinity a l stable humus t u i o t DIC i 5 0 0 y r n o charcoal n 106 9.5 Terrestrial Biosphere Model follows Goudriaan and Ketner (1984). Ocean model by Obata (2001) and Obata and Kitamura (2003) NPP (Miami model: Lieth (1975), Friedlingstein et al. (1992)).

  17. 気象研海洋炭素循環モデルによる海洋大気間二酸化炭素交換の経年変動 (1961-1998) Ocean Carbon Cycle Model by Meteorological Research Institute Climate change experiment Climate change experiment 1961-1998 1961-1998 (driven by NCEP w ind and JMA SST) Figure: Sea-to-Air CO 2 flux (in GtC/year) dashed line: global (variability (1std) = 0.23 GtC/yr) solid thick line: each region Equatorial eastern Pacific (0.13 GtC/yr) is dominant by the ENSO (during El Niño, weak easterly, weak upwelling, reduced carbon supply from deeper waters and reduced sea-air CO 2 flux). Obata and Kitamura, Interannual variability of the sea-air exchange of CO 2 from 1961 to 1998 ….., J. Geophys. Res., 108 (C11), 2003.

  18. Net Primary Production (empirically determined from temperature G l o b a l a m o u n t = andprecipitation, including pCO 2 air fertilization 5 8 G t C / y e a r effect) MRI model in 1976 ( p C O 2 a i r = 3 1 5 p p m ) More detailed model Woodward et al. (GBC, 1995)

  19. Global warming experiment using Fossil Fuel CO 2 Emission (IS92a scenario 1999-2100) Emission: CDIAC(1850-1998), IS92a(1999-2100). ( N 2 O, CH 4 , Halocarbon, tropos. Ozone: IS92a concentration ) ℃ Global surface air temperature Carbon budget 1850-2100 GtC 1 0 0 0 G t C Emission Initial ( 1850 ) Atmos Atmos 592 GtC Ocean 36343 GtC 0 Ocean Land 2412 GtC Land year year Negative denotes Warming of 1 ℃→ → Warming of 1.5 ℃ increase for ocean and land. mm/year Atmospheric CO 2 7 0 0 p p m Global precipitation ppm 6 0 0 5 0 0 4 0 0 Observation Model 3 0 0 year year CO 2 to the atmosphere from land-use change (e.g., 124 GtC: 1850-1990) is not included.

  20. Global warming experiment (IS92a CO 2 emission) Atlantic Meridional Circulation related to NADW formation (Contour interval = 2 × 10 6 m 3 /s) Depth (m) Year: 1860 NADW is reduced by 20 %. 18Sv ↓ 14Sv Depth (m) Year: 2100

  21. Climate Modeling at MRI Global AGCM 20km Chemical Mass Transport Ozone CMT Aerosol CMT Carbon Cycle Ice Sheet Cloud and Resolving Glacier Regional Climate Model 5km Asian Regional Coupled Regional Global Climate model Climate Model MRI-CGCM2 60km 20km/20km 300km/250km

  22. 1981 ~ 2010 2041 ~ 2080 Present Warmed Climate Climate

  23. Annual mean SST Observation WOA ) RCM (

  24. Dynamical sea level height (cm) Dynamical sea level height (cm) TOPEX/Poseidon 1993-1999 ) ( Model

  25. Climate Modeling at MRI Global AGCM 20km Chemical Mass Transport Ozone CMT Aerosol CMT Carbon Cycle Ice Sheet Cloud and Resolving Glacier Regional Climate Model 5km Asian Regional Coupled Regional Global Climate model Climate Model MRI-CGCM2 60km 20km/20km 300km/250km

  26. Earth Simulator

  27. 2 0 k mメ ッ シュ 全球気候モデルによる 現在気候の再現 1 時間降水量( m m )

  28. ン レーショ ュ TL959 による台風のシミ • 動画

  29. Simulations of Tropical Cyclones With AGCM of T106 Sugi, Noda and Sato (JMSJ, 2002)

  30. More results are coming soon. Acknow ledgment Computational resources are supplied by MRI, CGER/NIES and Earth Simulator.

Recommend


More recommend