classifying space for proper actions for groups admitting
play

Classifying space for proper actions for groups admitting a strict - PowerPoint PPT Presentation

Classifying space for proper actions for groups admitting a strict fundamental domain Tomasz Prytu la 04.04.2018 joint work with Nansen Petrosyan joint work with Nansen Petrosyan Outline joint work with Nansen Petrosyan Outline 1


  1. Classifying space for proper actions Goal Construct possibly simple models for EG of small dimension = vcd G - virtual cohomological dimension cd G - Bredon cohomological dimension Homology H G ∗ ( EG ) ◮ Baum-Connes conjecture ∼ = → K ∗ ( C ∗ K G ∗ ( EG ) − r ( G )) ◮ Atiyah-Segal Completion theorem (L¨ uck-Oliver ’01) Example SL (2 , Z ) � properly by isometries on H 2 ⇒ H 2 ≃ ESL (2 , Z )

  2. Classifying space for proper actions Goal Construct possibly simple models for EG of small dimension = vcd G - virtual cohomological dimension cd G - Bredon cohomological dimension Homology H G ∗ ( EG ) ◮ Baum-Connes conjecture ∼ = → K ∗ ( C ∗ K G ∗ ( EG ) − r ( G )) ◮ Atiyah-Segal Completion theorem (L¨ uck-Oliver ’01) Example SL (2 , Z ) � properly by isometries on H 2 ⇒ H 2 ≃ ESL (2 , Z ) SL (2 , Z ) ∼ = Z / 4 ∗ Z / 2 Z / 6

  3. Classifying space for proper actions Goal Construct possibly simple models for EG of small dimension = vcd G - virtual cohomological dimension cd G - Bredon cohomological dimension Homology H G ∗ ( EG ) ◮ Baum-Connes conjecture ∼ = → K ∗ ( C ∗ K G ∗ ( EG ) − r ( G )) ◮ Atiyah-Segal Completion theorem (L¨ uck-Oliver ’01) Example SL (2 , Z ) � properly by isometries on H 2 ⇒ H 2 ≃ ESL (2 , Z ) SL (2 , Z ) ∼ = Z / 4 ∗ Z / 2 Z / 6 � properly on a tree

  4. Classifying space for proper actions Goal Construct possibly simple models for EG of small dimension = vcd G - virtual cohomological dimension cd G - Bredon cohomological dimension Homology H G ∗ ( EG ) ◮ Baum-Connes conjecture ∼ = → K ∗ ( C ∗ K G ∗ ( EG ) − r ( G )) ◮ Atiyah-Segal Completion theorem (L¨ uck-Oliver ’01) Example SL (2 , Z ) � properly by isometries on H 2 ⇒ H 2 ≃ ESL (2 , Z ) SL (2 , Z ) ∼ = Z / 4 ∗ Z / 2 Z / 6 � properly on a tree ⇒ Tree ≃ ESL (2 , Z )

  5. Davis complex for a Coxeter group

  6. Davis complex for a Coxeter group Right-Angled Coxeter groups

  7. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex.

  8. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex.

  9. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex.

  10. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) �

  11. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples L W L

  12. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n L W L

  13. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n L ( Z / 2) n +1 W L

  14. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n (∆ n ) (0) L ( Z / 2) n +1 W L

  15. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n (∆ n ) (0) L ( Z / 2) n +1 ( Z / 2) ∗ ( n +1) W L

  16. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n (∆ n ) (0) L 1 ⊔ L 2 L ( Z / 2) n +1 ( Z / 2) ∗ ( n +1) W L

  17. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n (∆ n ) (0) L 1 ⊔ L 2 L ( Z / 2) n +1 ( Z / 2) ∗ ( n +1) W L 1 ∗ W L 2 W L

  18. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n (∆ n ) (0) L 1 ⊔ L 2 L 1 ∗ L 2 L ( Z / 2) n +1 ( Z / 2) ∗ ( n +1) W L 1 ∗ W L 2 W L

  19. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n (∆ n ) (0) L 1 ⊔ L 2 L 1 ∗ L 2 L ( Z / 2) n +1 ( Z / 2) ∗ ( n +1) W L 1 ∗ W L 2 W L 1 × W L 2 W L

  20. Davis complex for a Coxeter group Right-Angled Coxeter groups Let L be a finite, flag simplicial complex. W = W L = � s i ∈ V ( L ) | s 2 i = e , s i s j = s j s i iff { s i , s j } ∈ E ( L ) � Examples ∆ n (∆ n ) (0) L 1 ⊔ L 2 L 1 ∗ L 2 L ( Z / 2) n +1 ( Z / 2) ∗ ( n +1) W L 1 ∗ W L 2 W L 1 × W L 2 W L EW = Σ W = Σ - Davis complex

  21. Davis complex for a Coxeter group

  22. Davis complex for a Coxeter group Example

  23. Davis complex for a Coxeter group Example D ∞ = W L where

  24. Davis complex for a Coxeter group Example s t D ∞ = W L where L =

  25. Davis complex for a Coxeter group Example s t L ′ = D ∞ = W L where

  26. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where

  27. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where Σ D ∞ ∼ = R

  28. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst

  29. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst

  30. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst

  31. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst

  32. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst

  33. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst

  34. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst

  35. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst Σ W L = W L × CL ′ / ∼

  36. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst Σ W L = W L × CL ′ / ∼ Action of W on Σ W

  37. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst Σ W L = W L × CL ′ / ∼ Action of W on Σ W ◮ W � Σ W by w · [ w ′ , x ] = [ ww ′ , x ]

  38. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst Σ W L = W L × CL ′ / ∼ Action of W on Σ W ◮ W � Σ W by w · [ w ′ , x ] = [ ww ′ , x ] ◮ Σ W / W = [ e , CL ′ ] = CL ′ - strict fundamental domain

  39. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst Σ W L = W L × CL ′ / ∼ Action of W on Σ W ◮ W � Σ W by w · [ w ′ , x ] = [ ww ′ , x ] ◮ Σ W / W = [ e , CL ′ ] = CL ′ - strict fundamental domain ◮ Stabilisers =

  40. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst Σ W L = W L × CL ′ / ∼ Action of W on Σ W ◮ W � Σ W by w · [ w ′ , x ] = [ ww ′ , x ] ◮ Σ W / W = [ e , CL ′ ] = CL ′ - strict fundamental domain ◮ Stabilisers = conjugates of subgroups � s 1 , . . . , s n � ⊂ W where { s 1 , . . . , s n } spans a simplex of L

  41. Davis complex for a Coxeter group Example s t s e t L ′ = CL ′ = D ∞ = W L where s t Σ D ∞ ∼ = R s e t t e s s e t t e s s e t t e s s e st t ts tst Σ W L = W L × CL ′ / ∼ Action of W on Σ W ◮ W � Σ W by w · [ w ′ , x ] = [ ww ′ , x ] ◮ Σ W / W = [ e , CL ′ ] = CL ′ - strict fundamental domain ◮ Stabilisers = conjugates of subgroups � s 1 , . . . , s n � ⊂ W where { s 1 , . . . , s n } spans a simplex of L ⇒ proper action

  42. Davis complex for a Coxeter group Example

  43. Davis complex for a Coxeter group Example L s 1 s 3 s 2

  44. Davis complex for a Coxeter group Example W L ∼ L = ( Z / 2 × Z / 2) ∗ Z / 2 s 1 s 3 s 2

  45. Davis complex for a Coxeter group Example W L ∼ L = ( Z / 2 × Z / 2) ∗ Z / 2 s 1 s 3 s 2 CL ′ s 1 s 3 s 2

  46. Davis complex for a Coxeter group Example W L ∼ L = ( Z / 2 × Z / 2) ∗ Z / 2 s 1 s 3 Σ W L s 2 CL ′ s 1 CL ′ s 3 s 2

  47. Davis complex for a Coxeter group Example W L ∼ L = ( Z / 2 × Z / 2) ∗ Z / 2 s 1 s 3 Σ W L s 2 CL ′ s 1 CL ′ s 3 s 2 s 1

  48. Davis complex for a Coxeter group Example W L ∼ L = ( Z / 2 × Z / 2) ∗ Z / 2 s 1 s 3 Σ W L s 2 CL ′ s 1 CL ′ s 2 s 3 s 2 s 1

  49. Davis complex for a Coxeter group Example W L ∼ L = ( Z / 2 × Z / 2) ∗ Z / 2 s 1 s 3 Σ W L s 2 CL ′ s 1 CL ′ s 2 s 3 s 2 s 3 s 1

  50. Davis complex for a Coxeter group Example W L ∼ L = ( Z / 2 × Z / 2) ∗ Z / 2 s 1 s 3 Σ W L s 2 CL ′ s 1 CL ′ s 3 s 2

  51. Davis complex for a Coxeter group Theorem (Moussong)

  52. Davis complex for a Coxeter group Theorem (Moussong) Σ W supports a W –invariant CAT (0) metric.

  53. Davis complex for a Coxeter group Theorem (Moussong) Σ W supports a W –invariant CAT (0) metric. Therefore Σ W = EW .

  54. Davis complex for a Coxeter group Theorem (Moussong) Σ W supports a W –invariant CAT (0) metric. Therefore Σ W = EW . dim (Σ W L ) = dim ( CL ′ ) = dim ( L ) + 1

  55. Davis complex for a Coxeter group Theorem (Moussong) Σ W supports a W –invariant CAT (0) metric. Therefore Σ W = EW . dim (Σ W L ) = dim ( CL ′ ) = dim ( L ) + 1 Example

Recommend


More recommend