Class 39: LC and RLC Circuits
Course Evaluation: 1. Starts Wednesday, ends Dec 10 th . 2. Go to http://pa.as.uky.edu/ 3. Click at “UNDERGRADUATES” in the top menu and then choose the first item: Physics & Astronomy Course Evaluations 4. Follow instructions from there. 5. Make sure remember or write down any given key or password. You need this to re-enter the system if you cannot finish the evaluation in one time.
Old slide from last class Oscillation ‐ Spring Potential energy Kinetic energy 1 1 2 2 kx mv 2 2 k Conservation of energy: m 1 1 2 2 kx mv constant 2 2 1 1 2 2 kA or mv max 2 2 2 d Equation of motion: m x - kx 2 dt k Solution: x A sin ( t ) with m
Old slide from last class Oscillation – LC circuit Electric energy Magnetic energy 2 1 1 Q 2 LI 2 2 C Conservation of energy: C L 1 1 1 2 2 Q LI constant 2 C 2 1 1 1 2 2 Q or LI max max 2 C 2 2 dI 1 d Q 1 Kirchhoff’s rule : L Q Q 2 dt C C dt Solution: Solve the differential equation!
Oscillation – LC circuit Electric energy Magnetic energy 2 1 1 Q 2 LI 2 2 C Conservation of energy: C L 1 1 1 2 2 Q LI constant 2 C 2 2 dI 1 d Q 1 Kirchhoff’s rule : L Q L Q 2 dt C C dt k Solution: x A sin ( t ) with m 1 1 Q A sin ( t ) with LC LC
Similarity between Spring Oscillation and LC Oscillation I
Similarity between Spring Oscillation and LC Oscillation II k C m L Potential energy Kinetic energy Electric energy Magnetic energy 1 1 2 1 Q 1 2 2 kx mv 2 LI 2 2 2 C 2 Newton’s Law Kirchhoff’s rule: 2 d 2 dI 1 d Q 1 m x - kx L Q Q 2 dt 2 dt C dt C 2 1 Q 1 2 Potential energy Electrical energy kx 2 C 2 1 1 2 mv Kinetic energy Magnetic energy 2 LI 2 2 1 Spring constant k 1/Capacitance C Mass m Inductance L Displacement x Charge Q dQ I dx v Velocity v Current I dt dt
RLC circuit RLC circuit Damped Oscillation k m Friction = ‐ bv Equation of motion : Kirchhoff' s rule : 2 d d Q dI d 0 IR L (I Q ) m x - bv - kx (v x ) 2 C d t dt dt dt 2 d d Q 2 d d L Q R Q 0 m x b x kx 0 2 dt C dt 2 dt dt
RLC circuit and Mechanical Oscillation RLC circuit Mechanical Q x I = dQ/dt v = dx/dt C 1/k R b L m Magnetic energy ½LI 2 Kinetic energy ½mv 2 Potential energy ½kx 2 Electrical energy ½ (1/C)Q 2
RLC circuit RLC circuit Solution: R - t Q(t) Q e 2L cos t 0 d 2 1 R d LC 2L 0 under damped 2 1 R 0 critically damped LC 2L 0 over damped Kirchhoff' s rule : Q dI d 0 IR L (I Q ) C d t dt 2 d d Q L Q R Q 0 2 dt C dt
Damping R - t d real: under damped 2L Q(t) Q e cos 0 d d = 0: critically damped d imaginary: overdamped 2 1 R d LC 2L
Recommend
More recommend