cir ircula lar pol olarization antennas usi sing gap gap
play

Cir ircula lar Pol olarization Antennas usi sing Gap Gap - PowerPoint PPT Presentation

Cir ircula lar Pol olarization Antennas usi sing Gap Gap Waveguid ide Technologie ies at t 60 60 GH GHz Dayan Prez-Quintana 1,2 , Alicia Torres-Garca 1,2 , Iigo Ederra 1,2 , Miguel Beruete 1,2 dayan.perez@unavarra.es,


  1. Cir ircula lar Pol olarization Antennas usi sing Gap Gap Waveguid ide Technologie ies at t 60 60 GH GHz Dayan Pérez-Quintana 1,2 , Alicia Torres-García 1,2 , Iñigo Ederra 1,2 , Miguel Beruete 1,2 dayan.perez@unavarra.es, inigo.ederra@unavarra.es , miguel.beruete@unavarra.es 1 Department of Electrical, Electronic and Communications Engineering, Public University of Navarra, Spain 2 Institute of Smart Cities (ISC), Public University of Navarra, Navarra, Spain Introduction Theory Simulation Experimental Results Conclusion Gap Waveguide Technology Advantages • Low loss (most of the designs are fully metallic) • No need of electric contact • Adaptability to plane surfaces • Lower manufacturing cost Why use Circular Polarization? Circular polarization (CP) in wireless communications systems Groove Gap Ridge Gap Microstrip Gap Waveguide [1] Waveguide [2] Waveguide has several advantages over linear polarization: CP does not References [1] Ref. 1 A. Berenguer, V. Fusco, D. E. Zelenchuk, D. Sanchez-Escuderos, M. Baquero-Escudero, and V. E. Boria-Esbert, require polarization alignment between the transmitter and the “Propagation Characteristics of Groove Gap Waveguide Below and Above Cutoff,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 1, pp. 27 – 36, Jan. 2016. receiver and is more robust against multipath effects. [2] Ref. 2A. U. Zaman and P. Kildal, “Wide -Band Slot Antenna Arrays With Single-Layer Corporate-Feed Network in Ridge Gap Waveguide Technology,” IEEE Trans. Antennas Propag., vol. 62, no. 6, pp. 2992 – 3001, 2014.

  2. Cir Circular Pola olarizati tion Anten ennas usin ing Gap Waveg eguid ide e Tech echnologie ies at t 60 GHz Hz Dayan Pérez-Quintana 1,2 , Alicia Torres-García 1,2 , Iñigo Ederra 1,2 , Miguel Beruete 1,2 dayan.perez@unavarra.es, inigo.ederra@unavarra.es , miguel.beruete@unavarra.es Introduction Theory Simulation Experimental Results Conclusion Design and Circular Polarization Analysis Electric Field and Surface Currents at 63.5 GHz Electric Field Distribution at 63.5 GHz Surface Currents at 63.5 GHz

  3. Circular Pola Cir olarizati tion Anten ennas usin ing Gap Waveg eguid ide e Tech echnologie ies at t 60 GHz Hz Dayan Pérez-Quintana 1,2 , Alicia Torres-García 1,2 , Iñigo Ederra 1,2 , Miguel Beruete 1,2 dayan.perez@unavarra.es, inigo.ederra@unavarra.es , miguel.beruete@unavarra.es Introduction Theory Simulation Experimental Results Conclusion Geometry of the model Diamond Antenna Geometry of the model Diamond Horn Groove Antenna Diamond Horn Groove Copolar and crosspolar radiation pattern Copolar and crosspolar radiation pattern Diamond Antenna (D) Antenna (DHG) Normalized Amplitude (dB) XPD > 15 dB XPD > 15 dB Radiation Pattern at 63.5 GHz Radiation Pattern at 63.5 GHz Abs RHCP LHCP Abs RHCP LHCP

  4. Circular Pola Cir olarizati tion Anten ennas usin ing Gap Waveg eguid ide e Tech echnologie ies at t 60 GHz Hz Dayan Pérez-Quintana 1,2 , Alicia Torres-García 1,2 , Iñigo Ederra 1,2 , Miguel Beruete 1,2 dayan.perez@unavarra.es, inigo.ederra@unavarra.es , miguel.beruete@unavarra.es Introduction Theory Simulation Experimental Results Conclusion Experimental Results Diamond Antenna S 11 BW SIM = 14.55 % (58.95 - 68.16 GHz) BW MEA = 13.90 % (60.50 - 69.30 GHz) Axial Ratio BW SIM = 17.06 % (59 – 69.8 GHz) BW MEA = 12.79 % (59.3 – 67.4 GHz) Practical Operation BW BW total = 10.74 % (60.5 – 67.4 GHz) Gain max = 5.49 dB @ 67 GHz Feeding System WR-15

  5. Cir Circular Pola olarizati tion Anten ennas usin ing Gap Waveg eguid ide e Tech echnologie ies at t 60 GHz Hz Dayan Pérez-Quintana 1,2 , Alicia Torres-García 1,2 , Iñigo Ederra 1,2 , Miguel Beruete 1,2 dayan.perez@unavarra.es, inigo.ederra@unavarra.es , miguel.beruete@unavarra.es Introduction Theory Simulation Experimental Results Conclusion Experimental Results Diamond Horn Groove Antenna S 11 BW SIM = 14.17 % (59.0 - 68.0 GHz) BW MEA = 14.64 % (60.3 - 69.6 GHz) Axial Ratio BW SIM = 17.85 % (59.3 – 70.0 GHz) BW MEA = 17.32 % (59.0 – 70.0 GHz) Practical Operation BW BW total = 14.69 % (60.3 – 69.6 GHz) Gain max = 11.12 dB @ 67 GHz Feeding System WR-15

  6. Cir ircula lar Pol olarization Antennas usi sing Gap Gap Waveguid ide Technologie ies at t 60 60 GH GHz Dayan Pérez-Quintana 1,2 , Alicia Torres-García 1,2 , Iñigo Ederra 1,2 , Miguel Beruete 1,2 1 Department of Electrical, Electronic and Communications Engineering, Public University of Navarra, Spain 2 Institute of Smart Cities (ISC), Public University of Navarra, Navarra, Spain Introduction Theory Simulation Setup Results Conclusion 1. Simple, compact and low profile antenna using RGW technology. 2. Novel and simple mechanism to generate circular polarization. 3. BW above 14% with respect to the center frequency using the DHG antenna. 4. Maximum gain of 11.12 dB at 67 GHz. Publications 1. D. Pérez-Quintana, A. E. Torres-García, I. Ederra and M. Beruete, "Compact Groove Diamond Antenna in Gap Waveguide Technology With Broadband Circular Polarization at Millimeter Waves," in IEEE Transactions on Antennas and Propagation, vol. 68, no. 8, pp. 5778-5783, Aug. 2020, doi: 10.1109/TAP.2020.2996364. 2. D. Pérez-Quintana, I. Ederra and M. Beruete, "Bull’s -Eye Antenna with Circular Polarization at Millimeter Waves based on Ridge Gap Waveguide Technology," in IEEE Transactions on Antennas and Propagation, doi: 10.1109/TAP.2020.3019565. Contacts dayan.perez@unavarra.es, inigo.ederra@unavarra.es , miguel.beruete@unavarra.es

Recommend


More recommend