chitra rangan department of physics university of windsor
play

ChitraRangan DepartmentofPhysics,UniversityofWindsor - PowerPoint PPT Presentation

ChitraRangan DepartmentofPhysics,UniversityofWindsor Windsor,Ontario,Canada Windsor, Ontario Canada - The rose city Framework System:Rydbergwavepacket(RWP):


  1. Chitra
Rangan
 Department
of
Physics,
University
of
Windsor
 Windsor,
Ontario,
Canada


  2. Windsor, Ontario Canada - The rose city

  3. Framework
 • System:
Rydberg
wave
packet
(RWP):

 SuperposiCon
of
energy
eigenstates
exhibiCng

 Keplerian
moCon
about
a
nucleus
(‐1/r
potenCal).
 Dynamical
Cme
(driK/field‐free
evoluCon)
~10ps.

 • Control:
Terahertz
half‐cycle
pulse
(HCP):
 Approximately
an
impulse.
Controls
(~1ps)
are
much
 faster
than
the
driK.
 D.
You,
R.
R.
Jones,
D.R.
Dykaar,
and
P.H.
Bucksbaum,
OpCcs
LeWers
18,
290
(1993).
 • Decoherence:
 Negligible
sources
of
decoherence.

Coherence
Cme
 ~6ns.
Coherent
evoluCon.


  4. Outline
 • IntroducCon
to
RWPs
&
HCPs
 • Case
1:
Control
with
single
HCP
 – OpCmal
control
 • If
Cme
permits…
Control
with
two
kicks
 • Case
2a:
Control
can
be
treated
semiclassically
 – New
method
for
determining
the
width
of
an
RWP
 • Case
2b:
Control
can
only
be
treated
quantum
 mechanically
 – Removing
&
inserCng
coherences
from
a
subspace


  5. 3D
Coulomb
problem 
 ψ = − ∇ 2 ψ − 1 i ˙ r ψ 2 • Spherical
coordinates
 • SeparaCon
of
variables
 • Energy
eigenstates:
 ψ nlm ( r , θ , φ ) = R nl ( r ) P l ( θ ) F m ( φ ) ~
Laguerre
polynomials
 Spherical
harmonics
Y lm 
 H ψ nlm ( r , θ , φ ) = E n ψ nlm ( r , θ , φ ) = 1 2 n 2 ψ nlm ( r , θ , φ )

  6. Energy
level
diagram 
 E n = − 1 Δ E n = 1 2 n 2 ; n 3

  7. The
state
vector
is
a
coherent
superposiCon
of
highly
excited
states
of
 a
one
electron
atom
–
a
Rydberg
wave
packet
 ∑ | ψ 〉 = c n | φ n 〉 n n=15‐30

Rydberg
 The
energy
level
spacings
 states
 are
~
THz
 Dynamical
Cme
scales
~
 h ν 10
ps
 c n e − iE n t | φ n 〉 ∑ | ψ ( t ) 〉 = launch
state
 n Typical
states:
n~25
states
of
an
alkali
atom


  8. SculpBng
a
Rydberg
wave
packet
 ∑ | ψ 〉 = c n | φ n 〉 n T. C. Weinacht, J. Ahn, and P. H. Bucksbaum, Phys. Rev. Lett. 80, 5508 (1998).

  9. Bound
and
conBnuum
wave
packets
 c n e − iE n t /  | φ n 〉 c ( E ) e − iEt /  | φ ( E ) 〉 ∑ ∫ | ψ ( t ) 〉 = | ψ ( t ) 〉 = dE n

  10. Control:
THz
Half‐cycle
pulse
 • Unipolar
electromagneCc
field
 • FWHM
~0.5ps
 1.0
 1.0
 2.0
 • Short
unipolar
lobe,
then
long
negaCve
tail


  11. Impulse
approximaBon
 • When
T HCP 
<<
T dynamical 
 • HCP
~
‘impulse’
in
direcCon
of
polarizaCon
 • Atoms
do
not
feel
effect
of
negaCve
tail
 • Can
transfer
momentum
to
a
free
electron



  12. Control
equaBon 
 , t ) = − ∇ 2 ψ (  (  r ψ (  r , t ) − 1 i ˙ r r , t ) ψ 2 1 δ ( t 1 )  1 + Q 2 δ ( t 2 )  ) ψ (  ( r ⋅ ˆ r ⋅ ˆ + Q n n r , t ) 2 • We
assume
the
first
kick
Q 1
 is
along
the
quanCzaCon 
axis
(z‐axis)
–
2D
problem
 • The
second
kick
can
either
be
along
the
(z‐axis)
–
sCll 
a
2D
problem;
or
make
some
angle
to
the
z‐axis
–
3D 
problem
 • Comparisons
to
experiments
in
alkali
atoms, 
potenCal
slightly
different
from
Coulomb


  13. Numerical
approaches 
 • Truncated
basis
of
spherical
harmonics
 1. EssenCal
states
basis
–
energy
truncaCon 
useful
for
studying
bound
state‐to‐state 
problems
 – If
impulse
is
in
the
z‐direcCon
 – Numerical
diagonalizaCon
of
impulse
operator
 Rangan
and
Murray,
Phys.
Rev.
A
 72 ,
 053409
(2005) 


  14. Kicks
in
arbitrary
direcBons
 • Perpendicular
kicks,
impulse
delivered
along
 the
arbitrary
axis
 • 
Rotate
the
desired
axis
onto
the
z‐axis,
kick
 along
the
new
z,
and
then
rotate
back
using
D
 –
matrices


  15. Numerical
approaches
 2. RepresentaCon
using
truncated
radial
grid
and
 spherical
harmonics
(r‐l
basis)
 – Free
evoluCon
by
implicit
propagator
(for
2D)
 – Inversion
of
a
penta‐diagonal
matrix
for
each
value
 of
 l 
 – Time
step
limited
by
strength
of
kick
 
 Computa8onal
Physics,
Koonin
eq.
(7.30)
 


  16. Numerical
approaches 
 3.
Represent
radial
wave
funcCon
via
collocaCon 
using
(symmetry
suited)
Laguerre
funcCons
 – Boyd,
Rangan
and
Bucksbaum,
Journal
of 
ComputaConal
Physics,
 188 ,
56
(2003)
 • Propagate
using
Chebychev
propagator
 – H.
Tal‐Ezer
and
R.
Kosloff,

J.
Chem.
Phys.
 81 ,
3967 
(1984)
 • Fast,
but
not
so
good
for
studying
Coulomb 
problem


  17. Calculate
spectrum
of
final
state 
 • Energy
spectrum
by
window
method:
 Schafer
and
Kulander,
Phys.
Rev.
A
 42 ,
5794

(1990)
 • Final
state
has
both
bound
(discrete)
and
 unbound
(conCnuum)
components


  18. Coherent
interacBons
of
HCPs
 with
RWPs
 0.0014a.u. Information storage & retrieval 0.0023a.u. Synthesizing eigenstates 0.0046a.u. Quantum search algorithm Q 0.01a.u. Detecting angular momentum 0.02a.u. HCP assisted recombination Higher Stabilization, imaging, chaos, … Need all Q Impulsive momentum retrieval Ionizing away from the atomic core Atomic units: e = m e = ħ = 1

  19. Control
mechanism
‐
quantum
 Impulsive interaction Propagator U = e iQz iQz | e | Ψ 〉 = Ψ 〉 final initial • To first order, HCP couples l → l±1 • As Q increases:  <l> increases  max( Σ n |<nl| Ψ >| 2 ) goes towards higher ‘l’

  20. Control
mechanism
‐
classical
 Impulsive interaction HCP boosts the momentum of the electron p f = p i + Q E f = p f 2 /2 E f = E i + p i  Q + Q 2 /2 HCP also provides a torque to the bound electron increasing its angular momentum

  21. Case
I.

Performing
a
quantum
algorithm
 in
a
Rydberg
atom
using
an
HCP
 Single
kick
 • Collaborators:
Phil
Bucksbaum
and
group:
 Jae
Ahn,
Joel
Murray,
Haidan
Wan,
Santosh
 Pisharody,
James
White


  22. Grover, Phys. Rev. Lett. 79 , 325 (1998) Average Average (before IAA) (after IAA) Conversion of phase information to amplitude information 1 2 N 2 N 2 N 2 N 1 1 4 N / / /  / / − + −             2 N 1 2 N 2 N 2 N 1 3 4 N / / /  / / − + − −       2 N 2 N 1 2 N 2 N 1 1 4 N       / / /  / / = − + −                          2 N 2 N 2 N 1 2 N 1 1 4 N / / /  / / − + −       ψ T ψ i

  23. Control
trick
–
know
the
atom
 Q 0 Impulsive
interacBon
 n o ± 1,p → n o p | Ψ final 〉 = e iQz | Ψ n o ± 2,p → n o p initial 〉 Matrix
element
 mp (Q) ml ' iQz f np f ( Q ) m , l ' | e | n , l = 〈 〉 nl 0 n o p → n o p Q (a.u) Arrange
wave
packet
superposiCon
to
obtain
desired
outcome


  24. HCP
can
perform
a
quantum
search 
 1.0
 Before
HCP
 t=2.1ps

 (000010)
 1.0
 2.0
 t
=4.2ps
 (000100)
 Both
impulse
model
and
 t
=4.7ps
 realisCc
model
of
the
HCP
give
 (001000)
 excellent
agreement
with
the
 experiment.
 Phys.
Rev.
LeW.
86,
1179
(2001)
 Phys. Rev. A, 66, 22312 (2002)

  25. Shi & Rabitz (1988, 1990), Kosloff et al (1989), … Find the control field E(t), 0 ≤ t ≤ T Initial state: | Ψ ( t = 0) 〉 = |24 p 〉 + |25 p 〉− |26 p 〉 + |27 p 〉 + |28 p 〉 + |29 p 〉 maximize 2 | 26 p | ( T ) | Target functional: 〈 Ψ 〉 penalty T 2 ∫ l ( t ) | E ( t ) | dt Cost functional: parameter minimize 0 • | ( t ) H ( t , E ( t )) | ( t ) 0 c . c . Constraint: Schrödinger’s equation Ψ 〉 + ι Ψ 〉 = + Introduce Lagrange multiplier: | λ (t) 〉 Maximize unconstrained functional: T T • 2 2 J | 26 p | ( T ) | l ( t ) | E ( t ) | dt 2 Re dt ( ( t ) | ( t ) H ( t , E ( t )) | ( t ) ) = 〈 Ψ 〉 − − 〈 λ Ψ 〉 + ι Ψ 〉 ∫ ∫ 0 0

Recommend


More recommend