Characterizations of some types of linear independence of integer translates Sandra Saliani Department of Mathematics and Computer Science University of Basilicata Italy February Fourier Talks 2012 February 16 - 17, 2012 S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 1
Setting Systems of integer translates of a ψ ∈ L 2 ( R ) B = { ψ k , k ∈ Z } , ψ k ( x ) = ψ ( x − k ) , occur in approximation theory, frame theory, and wavelet analysis. Specific subset of the affine system generate by ψ { 2 j / 2 ψ ( 2 j x − k ) , j , k ∈ Z } . S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 2
Periodization function Definition Let ψ ∈ L 2 ( R ) , the periodization function is ψ ( ξ + k ) | 2 � | ˆ p ψ ( ξ ) = k ∈ Z p ψ ∈ L 1 ( T ) Many properties of B = { ψ k , k ∈ Z } can be completely described in terms of the periodization function p ψ . [Hernández, Šiki´ c, Weiss, and Wilson (2010)]. S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 3
Periodization function Definition Let ψ ∈ L 2 ( R ) , the periodization function is ψ ( ξ + k ) | 2 � | ˆ p ψ ( ξ ) = k ∈ Z p ψ ∈ L 1 ( T ) Many properties of B = { ψ k , k ∈ Z } can be completely described in terms of the periodization function p ψ . [Hernández, Šiki´ c, Weiss, and Wilson (2010)]. S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 3
Periodization function Definition Let ψ ∈ L 2 ( R ) , the periodization function is ψ ( ξ + k ) | 2 � | ˆ p ψ ( ξ ) = k ∈ Z p ψ ∈ L 1 ( T ) Many properties of B = { ψ k , k ∈ Z } can be completely described in terms of the periodization function p ψ . [Hernández, Šiki´ c, Weiss, and Wilson (2010)]. S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 3
Definition A sequence ( e n ) n ∈ N in a Hilbert space H is a Riesz basis if it is complete in H and there exist constants A , B > 0 such that, for any ( c n ) n ∈ N ∈ ℓ 2 ( N ) + ∞ + ∞ + ∞ | c n | 2 ≤ � c n e n � 2 ≤ B | c n | 2 . � � � A n = 0 n = 0 n = 0 Definition A sequence ( e n ) n ∈ N in a Hilbert space H is a Frame if There exist two real constants A , B > 0 such that, for any x ∈ H + ∞ A � x � 2 ≤ | < x , e n > | 2 ≤ B � x � 2 . � n = 0 S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 4
Definition A sequence ( e n ) n ∈ N in a Hilbert space H is a Riesz basis if it is complete in H and there exist constants A , B > 0 such that, for any ( c n ) n ∈ N ∈ ℓ 2 ( N ) + ∞ + ∞ + ∞ | c n | 2 ≤ � c n e n � 2 ≤ B | c n | 2 . � � � A n = 0 n = 0 n = 0 Definition A sequence ( e n ) n ∈ N in a Hilbert space H is a Frame if There exist two real constants A , B > 0 such that, for any x ∈ H + ∞ A � x � 2 ≤ | < x , e n > | 2 ≤ B � x � 2 . � n = 0 S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 4
Periodization function Let B = { ψ k , k ∈ Z } � ψ � = span ( B ) ⊂ L 2 ( R ) denotes the shift invariant space generated by ψ. ψ ( ξ + k ) | 2 � | ˆ p ψ ( ξ ) = k ∈ Z Theorem 1) B is Bessel for � ψ � with bound B ⇔ p ψ ( ξ ) ≤ B a . e . 2) B is an Orthonormal basis for � ψ � ⇔ p ψ ( ξ ) = 1 a . e . � B is a Riesz basis for � ψ � 3) ⇔ A ≤ p ψ ( ξ ) ≤ B a . e . with bounds A , B � B is a Frame for � ψ � ⇔ A ≤ p ψ ( ξ ) ≤ B a . e . 4) ξ ∈ T / { p ψ = 0 } with bounds A , B S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 5
Periodization function Let B = { ψ k , k ∈ Z } � ψ � = span ( B ) ⊂ L 2 ( R ) denotes the shift invariant space generated by ψ. ψ ( ξ + k ) | 2 � | ˆ p ψ ( ξ ) = k ∈ Z Theorem 1) B is Bessel for � ψ � with bound B ⇔ p ψ ( ξ ) ≤ B a . e . 2) B is an Orthonormal basis for � ψ � ⇔ p ψ ( ξ ) = 1 a . e . � B is a Riesz basis for � ψ � 3) ⇔ A ≤ p ψ ( ξ ) ≤ B a . e . with bounds A , B � B is a Frame for � ψ � ⇔ A ≤ p ψ ( ξ ) ≤ B a . e . 4) ξ ∈ T / { p ψ = 0 } with bounds A , B S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 5
Periodization function Let B = { ψ k , k ∈ Z } � ψ � = span ( B ) ⊂ L 2 ( R ) denotes the shift invariant space generated by ψ. ψ ( ξ + k ) | 2 � | ˆ p ψ ( ξ ) = k ∈ Z Theorem 1) B is Bessel for � ψ � with bound B ⇔ p ψ ( ξ ) ≤ B a . e . 2) B is an Orthonormal basis for � ψ � ⇔ p ψ ( ξ ) = 1 a . e . � B is a Riesz basis for � ψ � 3) ⇔ A ≤ p ψ ( ξ ) ≤ B a . e . with bounds A , B � B is a Frame for � ψ � ⇔ A ≤ p ψ ( ξ ) ≤ B a . e . 4) ξ ∈ T / { p ψ = 0 } with bounds A , B S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 5
Periodization function Let B = { ψ k , k ∈ Z } � ψ � = span ( B ) ⊂ L 2 ( R ) denotes the shift invariant space generated by ψ. ψ ( ξ + k ) | 2 � | ˆ p ψ ( ξ ) = k ∈ Z Theorem 1) B is Bessel for � ψ � with bound B ⇔ p ψ ( ξ ) ≤ B a . e . 2) B is an Orthonormal basis for � ψ � ⇔ p ψ ( ξ ) = 1 a . e . � B is a Riesz basis for � ψ � 3) ⇔ A ≤ p ψ ( ξ ) ≤ B a . e . with bounds A , B � B is a Frame for � ψ � ⇔ A ≤ p ψ ( ξ ) ≤ B a . e . 4) ξ ∈ T / { p ψ = 0 } with bounds A , B S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 5
Example Let ψ ( x ) = ( 1 − | x | ) χ [ − 1 , 1 ] ( x ) be a linear Spline. Then ψ ( ξ + k ) | 2 = 1 3 ( 1 + 2 cos 2 ( πξ )) . � | ˆ p ψ ( ξ ) = k ∈ Z B is a Riesz basis for the space { f ∈ L 2 ( R ) ∩ C ( R ) , f linear in intervals [ k , k + 1 ) , k ∈ Z } . S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 6
Different concepts of linear independence Definition We say that a sequence ( e n ) n ∈ N in a Hilbert space H is (i) Linearly independent if each finite subsequence is linearly independent. + ∞ (ii) ℓ 2 - Linearly independent if whenever the series � c n e n is n = 0 convergent and equal to zero for some coefficients ( c n ) n ∈ N ∈ ℓ 2 ( N ) , then necessarily c n = 0 for all n ∈ N . + ∞ � (iii) ω -Independent if whenever the series c n e n is convergent and n = 0 equal to zero for some scalar coefficients ( c n ) n ∈ N , then necessarily c n = 0 for all n ∈ N . (iv) Minimal if for all k ∈ N , e k / ∈ span { e n , n � = k } . S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 7
Different concepts of linear independence Definition We say that a sequence ( e n ) n ∈ N in a Hilbert space H is (i) Linearly independent if each finite subsequence is linearly independent. + ∞ (ii) ℓ 2 - Linearly independent if whenever the series � c n e n is n = 0 convergent and equal to zero for some coefficients ( c n ) n ∈ N ∈ ℓ 2 ( N ) , then necessarily c n = 0 for all n ∈ N . + ∞ � (iii) ω -Independent if whenever the series c n e n is convergent and n = 0 equal to zero for some scalar coefficients ( c n ) n ∈ N , then necessarily c n = 0 for all n ∈ N . (iv) Minimal if for all k ∈ N , e k / ∈ span { e n , n � = k } . S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 7
Different concepts of linear independence Definition We say that a sequence ( e n ) n ∈ N in a Hilbert space H is (i) Linearly independent if each finite subsequence is linearly independent. + ∞ (ii) ℓ 2 - Linearly independent if whenever the series � c n e n is n = 0 convergent and equal to zero for some coefficients ( c n ) n ∈ N ∈ ℓ 2 ( N ) , then necessarily c n = 0 for all n ∈ N . + ∞ � (iii) ω -Independent if whenever the series c n e n is convergent and n = 0 equal to zero for some scalar coefficients ( c n ) n ∈ N , then necessarily c n = 0 for all n ∈ N . (iv) Minimal if for all k ∈ N , e k / ∈ span { e n , n � = k } . S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 7
Different concepts of linear independence Definition We say that a sequence ( e n ) n ∈ N in a Hilbert space H is (i) Linearly independent if each finite subsequence is linearly independent. + ∞ (ii) ℓ 2 - Linearly independent if whenever the series � c n e n is n = 0 convergent and equal to zero for some coefficients ( c n ) n ∈ N ∈ ℓ 2 ( N ) , then necessarily c n = 0 for all n ∈ N . + ∞ � (iii) ω -Independent if whenever the series c n e n is convergent and n = 0 equal to zero for some scalar coefficients ( c n ) n ∈ N , then necessarily c n = 0 for all n ∈ N . (iv) Minimal if for all k ∈ N , e k / ∈ span { e n , n � = k } . S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 7
Periodization function and linear independence ψ ( ξ + k ) | 2 . | ˆ B = { ψ k , k ∈ Z } , � p ψ ( ξ ) = k ∈ Z Fact 1 ∈ L 1 ( T ) B is minimal ⇐ ⇒ p ψ ⇓ B is ω -independent ⇓ B is ℓ 2 - linearly independent p ψ ( ξ ) > 0 a.e. ⇐ = ⇓ B is linearly independent Always true S. Saliani - Università della Basilicata Linear independence of integer translates FFT 2012 8
Recommend
More recommend