Linear Models: Initial-Value Problems Summary Chapter 5: Modeling with Higher-Order Differential Equations Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 22, 2013 DE Lecture 8 王奕翔 王奕翔
Linear Models: Initial-Value Problems Summary 1 Linear Models: Initial-Value Problems 2 Summary DE Lecture 8 王奕翔
Linear Models: Initial-Value Problems Summary Modeling with Second Order Linear Differential Equation We focus on two linear dynamical systems modeled by the following: The two systems are: Spring/Mass Systems LRC Series Circuits DE Lecture 8 ay ′′ + by ′ + cy = g ( t ) , y (0) = y 0 , y ′ (0) = y 1 , where the initial conditions are at time t = 0 . 王奕翔
Linear Models: Initial-Value Problems Summary = = Hence, by Newton’s Second Law, = Due to Hooke’s Law, net force Assume that the equilibrium position is DE Lecture 8 Hooke’s Law + Newton’s Second Law x = 0 , and x 向下為正 = mg − k ( s + x ) . l l l + s Note that at equilibrium 淨力為零 ⇒ mg = ks . unstretched s m x equilibrium position mx ′′ = mg − k ( s + x ) = − kx m mg − ks = 0 motion ⇒ mx ′′ + kx = 0 (a) (b) (c) ⇒ x ′′ + k mx = x ′′ + ω 2 x = 0 √ where ω = k / m . 王奕翔
Linear Models: Initial-Value Problems Summary where DE Lecture 8 Free Undamped Motion Solution to x ′′ + ω 2 x = 0 : x ( t ) = c 1 cos ω t + c 2 sin ω t . Free : No external force ⇐ ⇒ Homogeneous Equation Undamped : Motion is periodic (period = 2 π ω ), no loss in energy. Alternative Representation of x ( t ) : x ( t ) = A sin ( ω t + φ ) √ A := c 2 1 + c 2 2 denotes the amplitude of the motion φ := tan − 1 c 1 c 2 denotes the initial phase angle 王奕翔
Linear Models: Initial-Value Problems with a resisting force proportional to the velocity. Summary Hence, by Newton’s Second Law, = Assume that the mass is in a surrounding medium Free Damped Motion DE Lecture 8 Net force = mg − k ( s + x ) − β x ′ . mx ′′ = mg − k ( s + x ) − β x ′ = − kx − β x ′ ⇒ x ′′ + β mx ′ + k mx = x ′′ + 2 λ x ′ + ω 2 x = 0 m √ where ω = k / m and λ = β /2 m . 王奕翔
Linear Models: Initial-Value Problems Summary DE Lecture 8 Solutions of Free Damped Motion √ D 2 + 2 λ D + ω 2 has two roots − λ ± λ 2 − ω 2 . Solution to x ′′ + 2 λ x ′ + ω 2 x = 0 : Overdamped λ 2 > ω 2 : x ( t ) = e − λ t ( λ 2 − ω 2 t ) √ √ λ 2 − ω 2 t + c 2 e − c 1 e Critically damped λ 2 = ω 2 : x ( t ) = e − λ t ( c 1 + c 2 t ) Underdamped λ 2 < ω 2 : x ( t ) = e − λ t ( ) √ √ ω 2 − λ 2 t + c 2 sin ω 2 − λ 2 t c 1 cos 王奕翔
Linear Models: Initial-Value Problems Summary (a) Overdamped (b) Critically damped (c) Underdamped DE Lecture 8 x x t t undamped x underdamped t 王奕翔
Linear Models: Initial-Value Problems vertically oscillating. = Summary Hence, by Newton’s Second Law, DE Lecture 8 applied to the system. For example, the support is Driven Motion Assume that the certain external force f ( t ) is Net force = mg − k ( s + x ) − β x + f ( t ) . mx ′′ = mg − k ( s + x ) − β x ′ + f ( t ) = − kx − β x ′ + f ( t ) ⇒ x ′′ + β mx ′ + k mx = x ′′ + 2 λ x ′ + ω 2 x = F ( t ) √ where ω = k / m , λ = β /2 m , and F ( t ) = f ( t )/ m . m 王奕翔
Linear Models: Initial-Value Problems 1 Find the complementary solution: 2 Find a particular solution: Summary DE Lecture 8 Solve When F ( t ) is Periodic x ′′ + 2 λ x ′ + ω 2 x = F 0 sin γ t . e − λ t ( λ 2 − ω 2 t ) √ √ λ 2 − ω 2 t + c 2 e − λ 2 > ω 2 , c 1 e e − λ t ( c 1 + c 2 t ) , λ 2 = ω 2 x c ( t ) = √ √ e − λ t ( ) λ 2 < ω 2 ω 2 − λ 2 t + c 2 sin ω 2 − λ 2 t , c 1 cos A sin γ t + B cos γ t , λ ̸ = 0 λ = 0 , ω 2 ̸ = γ 2 x p ( t ) = A sin γ t + B cos γ t , λ = 0 , ω 2 = γ 2 At sin γ t + Bt cos γ t , 王奕翔
Linear Models: Initial-Value Problems Summary steady-state transient DE Lecture 8 Driven Damped Motion: Steady-State vs.Transient When λ ̸ = 0 , it is a damped system, and the general solution is x ( t ) = x c ( t ) + A sin γ t + B cos γ t , where ( λ 2 − ω 2 t ) √ √ λ 2 − ω 2 t + c 2 e − λ 2 > ω 2 , c 1 e x c ( t ) = e − λ t λ 2 = ω 2 ( c 1 + c 2 t ) , √ √ ( ) ω 2 − λ 2 t + c 2 sin ω 2 − λ 2 t λ 2 < ω 2 , c 1 cos Note that if λ > 0 , x c ( t ) → 0 as t → ∞ . ∴ x ( t ) → A sin γ t + B cos γ t as t → ∞ . Decompose x ( t ) into two parts: x ( t ) = x c ( t ) + A sin γ t + B cos γ t � �� � ���� 王奕翔
Linear Models: Initial-Value Problems Summary Pure Resonance solution is DE Lecture 8 When λ = 0 and ω 2 = γ 2 , it is a undamped system, and the general x ( t ) = c 1 cos ω t + c 2 sin ω t + At sin ω t + Bt cos ω t Note that x ( t ) → ∞ as t → ∞ , which is because of resonance . x t 王奕翔
Linear Models: Initial-Value Problems Recall from Chapter 1 that the voltage drop across have Summary DE Lecture 8 Series Circuit the three elements are L dI dt , IR , and q C respectively. L Using the fact that I = dq E ( t ) R dt and Kirchhoff’s Law, we Lq ′′ + Rq ′ + q / C = E ( t ) . C Overdamped R 2 > 4 L / C Critically damped R 2 = 4 L / C Underdamped R 2 < 4 L / C 王奕翔
Linear Models: Initial-Value Problems Summary Steady-State Current Example steady-state charge across the capacitor and the steady-state current. DE Lecture 8 For the external voltage E ( t ) = E 0 sin γ t , find the L E ( t ) R C 王奕翔
Linear Models: Initial-Value Problems Summary 1 Linear Models: Initial-Value Problems 2 Summary DE Lecture 8 王奕翔
Recommend
More recommend