channel capacity and isoperimetric inequality
play

Channel Capacity and Isoperimetric Inequality Iftach Haitner Tel - PowerPoint PPT Presentation

Application of Information Theory, Lecture 5 Channel Capacity and Isoperimetric Inequality Iftach Haitner Tel Aviv University. November 25, 2014 Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 1 / 21 Part


  1. Shannon’s result ◮ Shannon showed that you can reduce the error rate towards 0, without reducing the transmission rate towards 0 ◮ For any c < C p , exists a code with transmission rate c that is correct w.p. ◮ Example: for p = . 1, C p > 1 2 . Hence, for sending x = ( x 1 , . . . , x m ) , one can send 2 m bits, such that x is recovered w.p. close to 1 ◮ More generally, ∀ p ∈ [ 0 , 1 ] ∃ C p such that for sending x ∈ { 0 , 1 } m , one can send ≈ m C p bits, and x is recovered w.p. close to 1 ◮ C p might be 0 (i.e., for p = 1 2 ) ◮ A revolution in EE and the whole world Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 5 / 21

  2. Error correction code Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 6 / 21

  3. Error correction code ◮ Message to send x = ( x 1 , . . . , x m ) ∈ { 0 , 1 } m Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 6 / 21

  4. Error correction code ◮ Message to send x = ( x 1 , . . . , x m ) ∈ { 0 , 1 } m ◮ Encoding scheme: f : { 0 , 1 } m �→ { 0 , 1 } n ( n > m ) Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 6 / 21

  5. Error correction code ◮ Message to send x = ( x 1 , . . . , x m ) ∈ { 0 , 1 } m ◮ Encoding scheme: f : { 0 , 1 } m �→ { 0 , 1 } n ( n > m ) ◮ Decoding scheme: g : { 0 , 1 } n �→ { 0 , 1 } m Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 6 / 21

  6. Error correction code ◮ Message to send x = ( x 1 , . . . , x m ) ∈ { 0 , 1 } m ◮ Encoding scheme: f : { 0 , 1 } m �→ { 0 , 1 } n ( n > m ) ◮ Decoding scheme: g : { 0 , 1 } n �→ { 0 , 1 } m m n — transmission rate ◮ Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 6 / 21

  7. Error correction code ◮ Message to send x = ( x 1 , . . . , x m ) ∈ { 0 , 1 } m ◮ Encoding scheme: f : { 0 , 1 } m �→ { 0 , 1 } n ( n > m ) ◮ Decoding scheme: g : { 0 , 1 } n �→ { 0 , 1 } m m n — transmission rate ◮ ◮ Sender sends f ( x ) rather than x Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 6 / 21

  8. Error correction code ◮ Message to send x = ( x 1 , . . . , x m ) ∈ { 0 , 1 } m ◮ Encoding scheme: f : { 0 , 1 } m �→ { 0 , 1 } n ( n > m ) ◮ Decoding scheme: g : { 0 , 1 } n �→ { 0 , 1 } m m n — transmission rate ◮ ◮ Sender sends f ( x ) rather than x ◮ Receiver decodes the message by applying g Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 6 / 21

  9. Error correction code ◮ Message to send x = ( x 1 , . . . , x m ) ∈ { 0 , 1 } m ◮ Encoding scheme: f : { 0 , 1 } m �→ { 0 , 1 } n ( n > m ) ◮ Decoding scheme: g : { 0 , 1 } n �→ { 0 , 1 } m m n — transmission rate ◮ ◮ Sender sends f ( x ) rather than x ◮ Receiver decodes the message by applying g encoding decoding channel x − → f ( x ) − → f ( x ) ⊕ Z − → g ( f ( x ) ⊕ Z ) ◮ ���� ���� � �� � m bits n bits bitwise XOR Z = ( Z 1 , . . . , Z n ) where Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) (i.e., over { 0 , 1 } with Pr [ Z i = 1 ] = p ) Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 6 / 21

  10. Error correction code ◮ Message to send x = ( x 1 , . . . , x m ) ∈ { 0 , 1 } m ◮ Encoding scheme: f : { 0 , 1 } m �→ { 0 , 1 } n ( n > m ) ◮ Decoding scheme: g : { 0 , 1 } n �→ { 0 , 1 } m m n — transmission rate ◮ ◮ Sender sends f ( x ) rather than x ◮ Receiver decodes the message by applying g encoding decoding channel x − → f ( x ) − → f ( x ) ⊕ Z − → g ( f ( x ) ⊕ Z ) ◮ ���� ���� � �� � m bits n bits bitwise XOR Z = ( Z 1 , . . . , Z n ) where Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) (i.e., over { 0 , 1 } with Pr [ Z i = 1 ] = p ) ◮ We hope g ( f ( x ) ⊕ Z ) = x Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 6 / 21

  11. Error correction code ◮ Message to send x = ( x 1 , . . . , x m ) ∈ { 0 , 1 } m ◮ Encoding scheme: f : { 0 , 1 } m �→ { 0 , 1 } n ( n > m ) ◮ Decoding scheme: g : { 0 , 1 } n �→ { 0 , 1 } m m n — transmission rate ◮ ◮ Sender sends f ( x ) rather than x ◮ Receiver decodes the message by applying g encoding decoding channel x − → f ( x ) − → f ( x ) ⊕ Z − → g ( f ( x ) ⊕ Z ) ◮ ���� ���� � �� � m bits n bits bitwise XOR Z = ( Z 1 , . . . , Z n ) where Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) (i.e., over { 0 , 1 } with Pr [ Z i = 1 ] = p ) ◮ We hope g ( f ( x ) ⊕ Z ) = x ◮ ECCs are everywhere Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 6 / 21

  12. Error correction code ◮ Message to send x = ( x 1 , . . . , x m ) ∈ { 0 , 1 } m ◮ Encoding scheme: f : { 0 , 1 } m �→ { 0 , 1 } n ( n > m ) ◮ Decoding scheme: g : { 0 , 1 } n �→ { 0 , 1 } m m n — transmission rate ◮ ◮ Sender sends f ( x ) rather than x ◮ Receiver decodes the message by applying g encoding decoding channel x − → f ( x ) − → f ( x ) ⊕ Z − → g ( f ( x ) ⊕ Z ) ◮ ���� ���� � �� � m bits n bits bitwise XOR Z = ( Z 1 , . . . , Z n ) where Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) (i.e., over { 0 , 1 } with Pr [ Z i = 1 ] = p ) ◮ We hope g ( f ( x ) ⊕ Z ) = x ◮ ECCs are everywhere ◮ ECC Vs compression Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 6 / 21

  13. Shannon’s theorem Theorem 1 ∃ m ε , s.t. ∀ m > m ε and n > m ( 1 ∀ p ∃ C p , s.t. ∀ ε > 0 C p + ε ) , ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. ∀ x ∈ { 0 , 1 } m : z ← Z =( Z 1 ,..., Z n ) [ g ( f ( x ) ⊕ z ) � = x ] ≤ ε Pr for Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) . Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 7 / 21

  14. Shannon’s theorem Theorem 1 ∃ m ε , s.t. ∀ m > m ε and n > m ( 1 ∀ p ∃ C p , s.t. ∀ ε > 0 C p + ε ) , ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. ∀ x ∈ { 0 , 1 } m : z ← Z =( Z 1 ,..., Z n ) [ g ( f ( x ) ⊕ z ) � = x ] ≤ ε Pr for Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) . ◮ C p = 1 − h ( p ) — the channel capacity Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 7 / 21

  15. Shannon’s theorem Theorem 1 ∃ m ε , s.t. ∀ m > m ε and n > m ( 1 ∀ p ∃ C p , s.t. ∀ ε > 0 C p + ε ) , ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. ∀ x ∈ { 0 , 1 } m : z ← Z =( Z 1 ,..., Z n ) [ g ( f ( x ) ⊕ z ) � = x ] ≤ ε Pr for Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) . ◮ C p = 1 − h ( p ) — the channel capacity ⇒ C p = 0 . 5310 > 1 p = . 1 = 2 Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 7 / 21

  16. Shannon’s theorem Theorem 1 ∃ m ε , s.t. ∀ m > m ε and n > m ( 1 ∀ p ∃ C p , s.t. ∀ ε > 0 C p + ε ) , ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. ∀ x ∈ { 0 , 1 } m : z ← Z =( Z 1 ,..., Z n ) [ g ( f ( x ) ⊕ z ) � = x ] ≤ ε Pr for Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) . ◮ C p = 1 − h ( p ) — the channel capacity ⇒ C p = 0 . 5310 > 1 p = . 1 = 2 ⇒ C p ≈ 1 p = . 25 = 5 Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 7 / 21

  17. Shannon’s theorem Theorem 1 ∃ m ε , s.t. ∀ m > m ε and n > m ( 1 ∀ p ∃ C p , s.t. ∀ ε > 0 C p + ε ) , ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. ∀ x ∈ { 0 , 1 } m : z ← Z =( Z 1 ,..., Z n ) [ g ( f ( x ) ⊕ z ) � = x ] ≤ ε Pr for Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) . ◮ C p = 1 − h ( p ) — the channel capacity ⇒ C p = 0 . 5310 > 1 p = . 1 = 2 ⇒ C p ≈ 1 p = . 25 = 5 ◮ Tight theorem Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 7 / 21

  18. Shannon’s theorem Theorem 1 ∃ m ε , s.t. ∀ m > m ε and n > m ( 1 ∀ p ∃ C p , s.t. ∀ ε > 0 C p + ε ) , ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. ∀ x ∈ { 0 , 1 } m : z ← Z =( Z 1 ,..., Z n ) [ g ( f ( x ) ⊕ z ) � = x ] ≤ ε Pr for Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) . ◮ C p = 1 − h ( p ) — the channel capacity ⇒ C p = 0 . 5310 > 1 p = . 1 = 2 ⇒ C p ≈ 1 p = . 25 = 5 ◮ Tight theorem ◮ We prove a weaker variant that holds w.h.p. over x ← { 0 , 1 } m Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 7 / 21

  19. Hamming distance Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 8 / 21

  20. Hamming distance ◮ For y = ( y 1 , . . . , y n ) ∈ { 0 , 1 } n , let | y | = � i y i — Hamming weight of y Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 8 / 21

  21. Hamming distance ◮ For y = ( y 1 , . . . , y n ) ∈ { 0 , 1 } n , let | y | = � i y i — Hamming weight of y ◮ | y − y ′ | = | y ⊕ y ′ | — Hamming distance of y from y ′ ; # of places differ. Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 8 / 21

  22. Proving the theorem Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 9 / 21

  23. Proving the theorem ◮ Fix p ∈ [ 0 , 1 2 ) and ε > 0, and let m > m ε and n ≥ m ( 1 C p + ε ) , for m ε to be determined by the analysis. Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 9 / 21

  24. Proving the theorem ◮ Fix p ∈ [ 0 , 1 2 ) and ε > 0, and let m > m ε and n ≥ m ( 1 C p + ε ) , for m ε to be determined by the analysis. Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 9 / 21

  25. Proving the theorem ◮ Fix p ∈ [ 0 , 1 2 ) and ε > 0, and let m > m ε and n ≥ m ( 1 C p + ε ) , for m ε to be determined by the analysis. (Recall C p = 1 − h ( p ) ). Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 9 / 21

  26. Proving the theorem ◮ Fix p ∈ [ 0 , 1 2 ) and ε > 0, and let m > m ε and n ≥ m ( 1 C p + ε ) , for m ε to be determined by the analysis. (Recall C p = 1 − h ( p ) ). ◮ We show ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. Pr x ←{ 0 , 1 } m [ g ( f ( x ) ⊕ Z ) � = x ] ≤ ε Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 9 / 21

  27. Proving the theorem ◮ Fix p ∈ [ 0 , 1 2 ) and ε > 0, and let m > m ε and n ≥ m ( 1 C p + ε ) , for m ε to be determined by the analysis. (Recall C p = 1 − h ( p ) ). ◮ We show ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. Pr x ←{ 0 , 1 } m [ g ( f ( x ) ⊕ Z ) � = x ] ≤ ε ◮ g ( y ) returns argmin x ′ ∈{ 0 , 1 } m | y − f ( x ′ ) | Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 9 / 21

  28. Proving the theorem ◮ Fix p ∈ [ 0 , 1 2 ) and ε > 0, and let m > m ε and n ≥ m ( 1 C p + ε ) , for m ε to be determined by the analysis. (Recall C p = 1 − h ( p ) ). ◮ We show ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. Pr x ←{ 0 , 1 } m [ g ( f ( x ) ⊕ Z ) � = x ] ≤ ε ◮ g ( y ) returns argmin x ′ ∈{ 0 , 1 } m | y − f ( x ′ ) | ◮ So it all boils down to finding f s.t. � � | f ( x ) − y | < min x ′ ∈{ 0 , 1 } m \{ x } | f ( x ′ ) − y | Pr x ←{ 0 , 1 } m ; y = f ( x ) ⊕ Z ≥ 1 − ε Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 9 / 21

  29. Proving the theorem ◮ Fix p ∈ [ 0 , 1 2 ) and ε > 0, and let m > m ε and n ≥ m ( 1 C p + ε ) , for m ε to be determined by the analysis. (Recall C p = 1 − h ( p ) ). ◮ We show ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. Pr x ←{ 0 , 1 } m [ g ( f ( x ) ⊕ Z ) � = x ] ≤ ε ◮ g ( y ) returns argmin x ′ ∈{ 0 , 1 } m | y − f ( x ′ ) | ◮ So it all boils down to finding f s.t. � � | f ( x ) − y | < min x ′ ∈{ 0 , 1 } m \{ x } | f ( x ′ ) − y | Pr x ←{ 0 , 1 } m ; y = f ( x ) ⊕ Z ≥ 1 − ε ◮ Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 9 / 21

  30. Proving the theorem ◮ Fix p ∈ [ 0 , 1 2 ) and ε > 0, and let m > m ε and n ≥ m ( 1 C p + ε ) , for m ε to be determined by the analysis. (Recall C p = 1 − h ( p ) ). ◮ We show ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. Pr x ←{ 0 , 1 } m [ g ( f ( x ) ⊕ Z ) � = x ] ≤ ε ◮ g ( y ) returns argmin x ′ ∈{ 0 , 1 } m | y − f ( x ′ ) | ◮ So it all boils down to finding f s.t. � � | f ( x ) − y | < min x ′ ∈{ 0 , 1 } m \{ x } | f ( x ′ ) − y | Pr x ←{ 0 , 1 } m ; y = f ( x ) ⊕ Z ≥ 1 − ε ◮ Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 9 / 21

  31. Proving the theorem ◮ Fix p ∈ [ 0 , 1 2 ) and ε > 0, and let m > m ε and n ≥ m ( 1 C p + ε ) , for m ε to be determined by the analysis. (Recall C p = 1 − h ( p ) ). ◮ We show ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. Pr x ←{ 0 , 1 } m [ g ( f ( x ) ⊕ Z ) � = x ] ≤ ε ◮ g ( y ) returns argmin x ′ ∈{ 0 , 1 } m | y − f ( x ′ ) | ◮ So it all boils down to finding f s.t. � � | f ( x ) − y | < min x ′ ∈{ 0 , 1 } m \{ x } | f ( x ′ ) − y | Pr x ←{ 0 , 1 } m ; y = f ( x ) ⊕ Z ≥ 1 − ε ◮ Idea: for p ′ > p to be determined later, find f s.t. w.h.p. over x and Z : (1) | f ( x ) ⊕ Z , f ( x ) | ≤ p ′ n (2) | f ( x ) ⊕ Z , f ( x ′ ) | > p ′ n for all x ′ � = x Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 9 / 21

  32. Proving the theorem ◮ Fix p ∈ [ 0 , 1 2 ) and ε > 0, and let m > m ε and n ≥ m ( 1 C p + ε ) , for m ε to be determined by the analysis. (Recall C p = 1 − h ( p ) ). ◮ We show ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. Pr x ←{ 0 , 1 } m [ g ( f ( x ) ⊕ Z ) � = x ] ≤ ε ◮ g ( y ) returns argmin x ′ ∈{ 0 , 1 } m | y − f ( x ′ ) | ◮ So it all boils down to finding f s.t. � � | f ( x ) − y | < min x ′ ∈{ 0 , 1 } m \{ x } | f ( x ′ ) − y | Pr x ←{ 0 , 1 } m ; y = f ( x ) ⊕ Z ≥ 1 − ε ◮ Idea: for p ′ > p to be determined later, find f s.t. w.h.p. over x and Z : (1) | f ( x ) ⊕ Z , f ( x ) | ≤ p ′ n (2) | f ( x ) ⊕ Z , f ( x ′ ) | > p ′ n for all x ′ � = x Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 9 / 21

  33. Proving the theorem ◮ Fix p ∈ [ 0 , 1 2 ) and ε > 0, and let m > m ε and n ≥ m ( 1 C p + ε ) , for m ε to be determined by the analysis. (Recall C p = 1 − h ( p ) ). ◮ We show ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. Pr x ←{ 0 , 1 } m [ g ( f ( x ) ⊕ Z ) � = x ] ≤ ε ◮ g ( y ) returns argmin x ′ ∈{ 0 , 1 } m | y − f ( x ′ ) | ◮ So it all boils down to finding f s.t. � � | f ( x ) − y | < min x ′ ∈{ 0 , 1 } m \{ x } | f ( x ′ ) − y | Pr x ←{ 0 , 1 } m ; y = f ( x ) ⊕ Z ≥ 1 − ε ◮ Idea: for p ′ > p to be determined later, find f s.t. w.h.p. over x and Z : (1) | f ( x ) ⊕ Z , f ( x ) | ≤ p ′ n (2) | f ( x ) ⊕ Z , f ( x ′ ) | > p ′ n for all x ′ � = x ◮ We choose f uniformly at random (what does it mean?) Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 9 / 21

  34. Proving the theorem ◮ Fix p ∈ [ 0 , 1 2 ) and ε > 0, and let m > m ε and n ≥ m ( 1 C p + ε ) , for m ε to be determined by the analysis. (Recall C p = 1 − h ( p ) ). ◮ We show ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. Pr x ←{ 0 , 1 } m [ g ( f ( x ) ⊕ Z ) � = x ] ≤ ε ◮ g ( y ) returns argmin x ′ ∈{ 0 , 1 } m | y − f ( x ′ ) | ◮ So it all boils down to finding f s.t. � � | f ( x ) − y | < min x ′ ∈{ 0 , 1 } m \{ x } | f ( x ′ ) − y | Pr x ←{ 0 , 1 } m ; y = f ( x ) ⊕ Z ≥ 1 − ε ◮ Idea: for p ′ > p to be determined later, find f s.t. w.h.p. over x and Z : (1) | f ( x ) ⊕ Z , f ( x ) | ≤ p ′ n (2) | f ( x ) ⊕ Z , f ( x ′ ) | > p ′ n for all x ′ � = x ◮ We choose f uniformly at random (what does it mean?) ◮ Non-constructive proof Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 9 / 21

  35. Proving the theorem ◮ Fix p ∈ [ 0 , 1 2 ) and ε > 0, and let m > m ε and n ≥ m ( 1 C p + ε ) , for m ε to be determined by the analysis. (Recall C p = 1 − h ( p ) ). ◮ We show ∃ f : { 0 , 1 } m �→ { 0 , 1 } n and g : { 0 , 1 } n �→ { 0 , 1 } m , s.t. Pr x ←{ 0 , 1 } m [ g ( f ( x ) ⊕ Z ) � = x ] ≤ ε ◮ g ( y ) returns argmin x ′ ∈{ 0 , 1 } m | y − f ( x ′ ) | ◮ So it all boils down to finding f s.t. � � | f ( x ) − y | < min x ′ ∈{ 0 , 1 } m \{ x } | f ( x ′ ) − y | Pr x ←{ 0 , 1 } m ; y = f ( x ) ⊕ Z ≥ 1 − ε ◮ Idea: for p ′ > p to be determined later, find f s.t. w.h.p. over x and Z : (1) | f ( x ) ⊕ Z , f ( x ) | ≤ p ′ n (2) | f ( x ) ⊕ Z , f ( x ′ ) | > p ′ n for all x ′ � = x ◮ We choose f uniformly at random (what does it mean?) ◮ Non-constructive proof ◮ Probabilistic method Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 9 / 21

  36. Proving there exists good f Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 10 / 21

  37. Proving there exists good f ◮ Fix p ′ > p such that 1 C p ≤ ε 1 C p ′ − 2 Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 10 / 21

  38. Proving there exists good f ◮ Fix p ′ > p such that 1 C p ≤ ε 1 C p ′ − 2 ◮ For y ∈ { 0 , 1 } n , let B p ′ ( y ) = { y ∈ { 0 , 1 } n : | y ′ − y | ≤ p ′ n } Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 10 / 21

  39. Proving there exists good f ◮ Fix p ′ > p such that 1 C p ≤ ε 1 C p ′ − 2 ◮ For y ∈ { 0 , 1 } n , let B p ′ ( y ) = { y ∈ { 0 , 1 } n : | y ′ − y | ≤ p ′ n } ( 1 ) By weak low of large numbers, ∃ n ′ ∈ N s.t. ∀ n ≥ n ′ and ∀ x ∈ { 0 , 1 } m : ∈ B p ′ ( f ( x ))] ≤ ε α n := Pr z ← Z [( f ( x ) ⊕ z ) / (for any fixed f ) 2 Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 10 / 21

  40. Proving there exists good f ◮ Fix p ′ > p such that 1 C p ≤ ε 1 C p ′ − 2 ◮ For y ∈ { 0 , 1 } n , let B p ′ ( y ) = { y ∈ { 0 , 1 } n : | y ′ − y | ≤ p ′ n } ( 1 ) By weak low of large numbers, ∃ n ′ ∈ N s.t. ∀ n ≥ n ′ and ∀ x ∈ { 0 , 1 } m : ∈ B p ′ ( f ( x ))] ≤ ε α n := Pr z ← Z [( f ( x ) ⊕ z ) / (for any fixed f ) 2 ◮ Fact (proved later): b ( p ′ ) = | B p ′ ( y ) | ≤ 2 n · h ( p ′ ) Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 10 / 21

  41. Proving there exists good f ◮ Fix p ′ > p such that 1 C p ≤ ε 1 C p ′ − 2 ◮ For y ∈ { 0 , 1 } n , let B p ′ ( y ) = { y ∈ { 0 , 1 } n : | y ′ − y | ≤ p ′ n } ( 1 ) By weak low of large numbers, ∃ n ′ ∈ N s.t. ∀ n ≥ n ′ and ∀ x ∈ { 0 , 1 } m : ∈ B p ′ ( f ( x ))] ≤ ε α n := Pr z ← Z [( f ( x ) ⊕ z ) / (for any fixed f ) 2 ◮ Fact (proved later): b ( p ′ ) = | B p ′ ( y ) | ≤ 2 n · h ( p ′ ) ∀ x � = x ′ ∈ { 0 , 1 } m : Pr f , Z [ f ( x ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] = b ( p ′ ) = ⇒ 2 n Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 10 / 21

  42. Proving there exists good f ◮ Fix p ′ > p such that 1 C p ≤ ε 1 C p ′ − 2 ◮ For y ∈ { 0 , 1 } n , let B p ′ ( y ) = { y ∈ { 0 , 1 } n : | y ′ − y | ≤ p ′ n } ( 1 ) By weak low of large numbers, ∃ n ′ ∈ N s.t. ∀ n ≥ n ′ and ∀ x ∈ { 0 , 1 } m : ∈ B p ′ ( f ( x ))] ≤ ε α n := Pr z ← Z [( f ( x ) ⊕ z ) / (for any fixed f ) 2 ◮ Fact (proved later): b ( p ′ ) = | B p ′ ( y ) | ≤ 2 n · h ( p ′ ) ∀ x � = x ′ ∈ { 0 , 1 } m : Pr f , Z [ f ( x ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] = b ( p ′ ) = ⇒ 2 n Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 10 / 21

  43. Proving there exists good f ◮ Fix p ′ > p such that 1 C p ≤ ε 1 C p ′ − 2 ◮ For y ∈ { 0 , 1 } n , let B p ′ ( y ) = { y ∈ { 0 , 1 } n : | y ′ − y | ≤ p ′ n } ( 1 ) By weak low of large numbers, ∃ n ′ ∈ N s.t. ∀ n ≥ n ′ and ∀ x ∈ { 0 , 1 } m : ∈ B p ′ ( f ( x ))] ≤ ε α n := Pr z ← Z [( f ( x ) ⊕ z ) / (for any fixed f ) 2 ◮ Fact (proved later): b ( p ′ ) = | B p ′ ( y ) | ≤ 2 n · h ( p ′ ) ∀ x � = x ′ ∈ { 0 , 1 } m : Pr f , Z [ f ( x ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] = b ( p ′ ) ≤ 2 n · h ( p ′ ) = 2 − nC p ′ = ⇒ 2 n 2 n Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 10 / 21

  44. Proving there exists good f ◮ Fix p ′ > p such that 1 C p ≤ ε 1 C p ′ − 2 ◮ For y ∈ { 0 , 1 } n , let B p ′ ( y ) = { y ∈ { 0 , 1 } n : | y ′ − y | ≤ p ′ n } ( 1 ) By weak low of large numbers, ∃ n ′ ∈ N s.t. ∀ n ≥ n ′ and ∀ x ∈ { 0 , 1 } m : ∈ B p ′ ( f ( x ))] ≤ ε α n := Pr z ← Z [( f ( x ) ⊕ z ) / (for any fixed f ) 2 ◮ Fact (proved later): b ( p ′ ) = | B p ′ ( y ) | ≤ 2 n · h ( p ′ ) ∀ x � = x ′ ∈ { 0 , 1 } m : Pr f , Z [ f ( x ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] = b ( p ′ ) ≤ 2 n · h ( p ′ ) = 2 − nC p ′ = ⇒ 2 n 2 n ∀ x ∈ { 0 , 1 } m : Pr f , Z [ ∃ x ′ � = x ∈ { 0 , 1 } m : f ( x ′ ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] ≤ 2 m − nC p ′ = ⇒ Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 10 / 21

  45. Proving there exists good f ◮ Fix p ′ > p such that 1 C p ≤ ε 1 C p ′ − 2 ◮ For y ∈ { 0 , 1 } n , let B p ′ ( y ) = { y ∈ { 0 , 1 } n : | y ′ − y | ≤ p ′ n } ( 1 ) By weak low of large numbers, ∃ n ′ ∈ N s.t. ∀ n ≥ n ′ and ∀ x ∈ { 0 , 1 } m : ∈ B p ′ ( f ( x ))] ≤ ε α n := Pr z ← Z [( f ( x ) ⊕ z ) / (for any fixed f ) 2 ◮ Fact (proved later): b ( p ′ ) = | B p ′ ( y ) | ≤ 2 n · h ( p ′ ) ∀ x � = x ′ ∈ { 0 , 1 } m : Pr f , Z [ f ( x ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] = b ( p ′ ) ≤ 2 n · h ( p ′ ) = 2 − nC p ′ = ⇒ 2 n 2 n ∀ x ∈ { 0 , 1 } m : Pr f , Z [ ∃ x ′ � = x ∈ { 0 , 1 } m : f ( x ′ ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] ≤ 2 m − nC p ′ = ⇒ = ⇒ ∃ f s.t. β m , n := Pr x ←{ 0 , 1 } m [ ∃ x ′ � = x ∈ { 0 , 1 } m : f ( x ′ ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] ≤ 2 m − nC p ′ Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 10 / 21

  46. Proving there exists good f ◮ Fix p ′ > p such that 1 C p ≤ ε 1 C p ′ − 2 ◮ For y ∈ { 0 , 1 } n , let B p ′ ( y ) = { y ∈ { 0 , 1 } n : | y ′ − y | ≤ p ′ n } ( 1 ) By weak low of large numbers, ∃ n ′ ∈ N s.t. ∀ n ≥ n ′ and ∀ x ∈ { 0 , 1 } m : ∈ B p ′ ( f ( x ))] ≤ ε α n := Pr z ← Z [( f ( x ) ⊕ z ) / (for any fixed f ) 2 ◮ Fact (proved later): b ( p ′ ) = | B p ′ ( y ) | ≤ 2 n · h ( p ′ ) ∀ x � = x ′ ∈ { 0 , 1 } m : Pr f , Z [ f ( x ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] = b ( p ′ ) ≤ 2 n · h ( p ′ ) = 2 − nC p ′ = ⇒ 2 n 2 n ∀ x ∈ { 0 , 1 } m : Pr f , Z [ ∃ x ′ � = x ∈ { 0 , 1 } m : f ( x ′ ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] ≤ 2 m − nC p ′ = ⇒ = ⇒ ∃ f s.t. β m , n := Pr x ←{ 0 , 1 } m [ ∃ x ′ � = x ∈ { 0 , 1 } m : f ( x ′ ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] ≤ 2 m − nC p ′ C p ′ + 1 − log ε β m , n ≤ ε C p ′ − log ε + 1 = m ( 1 m = ⇒ 2 , for n ≥ ) m Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 10 / 21

  47. Proving there exists good f ◮ Fix p ′ > p such that 1 C p ≤ ε 1 C p ′ − 2 ◮ For y ∈ { 0 , 1 } n , let B p ′ ( y ) = { y ∈ { 0 , 1 } n : | y ′ − y | ≤ p ′ n } ( 1 ) By weak low of large numbers, ∃ n ′ ∈ N s.t. ∀ n ≥ n ′ and ∀ x ∈ { 0 , 1 } m : ∈ B p ′ ( f ( x ))] ≤ ε α n := Pr z ← Z [( f ( x ) ⊕ z ) / (for any fixed f ) 2 ◮ Fact (proved later): b ( p ′ ) = | B p ′ ( y ) | ≤ 2 n · h ( p ′ ) ∀ x � = x ′ ∈ { 0 , 1 } m : Pr f , Z [ f ( x ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] = b ( p ′ ) ≤ 2 n · h ( p ′ ) = 2 − nC p ′ = ⇒ 2 n 2 n ∀ x ∈ { 0 , 1 } m : Pr f , Z [ ∃ x ′ � = x ∈ { 0 , 1 } m : f ( x ′ ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] ≤ 2 m − nC p ′ = ⇒ = ⇒ ∃ f s.t. β m , n := Pr x ←{ 0 , 1 } m [ ∃ x ′ � = x ∈ { 0 , 1 } m : f ( x ′ ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] ≤ 2 m − nC p ′ C p ′ + 1 − log ε β m , n ≤ ε C p ′ − log ε + 1 = m ( 1 m = ⇒ 2 , for n ≥ ) m 2 , for m ≥ m ′ = 2 ( 1 − log ε ) ( 2 ) β m , n ≤ ε and n ≥ m ( 1 C p + ε 2 + 1 − log ε ) = m ( 1 C p + ε ) ε m Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 10 / 21

  48. Proving there exists good f ◮ Fix p ′ > p such that 1 C p ≤ ε 1 C p ′ − 2 ◮ For y ∈ { 0 , 1 } n , let B p ′ ( y ) = { y ∈ { 0 , 1 } n : | y ′ − y | ≤ p ′ n } ( 1 ) By weak low of large numbers, ∃ n ′ ∈ N s.t. ∀ n ≥ n ′ and ∀ x ∈ { 0 , 1 } m : ∈ B p ′ ( f ( x ))] ≤ ε α n := Pr z ← Z [( f ( x ) ⊕ z ) / (for any fixed f ) 2 ◮ Fact (proved later): b ( p ′ ) = | B p ′ ( y ) | ≤ 2 n · h ( p ′ ) ∀ x � = x ′ ∈ { 0 , 1 } m : Pr f , Z [ f ( x ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] = b ( p ′ ) ≤ 2 n · h ( p ′ ) = 2 − nC p ′ = ⇒ 2 n 2 n ∀ x ∈ { 0 , 1 } m : Pr f , Z [ ∃ x ′ � = x ∈ { 0 , 1 } m : f ( x ′ ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] ≤ 2 m − nC p ′ = ⇒ = ⇒ ∃ f s.t. β m , n := Pr x ←{ 0 , 1 } m [ ∃ x ′ � = x ∈ { 0 , 1 } m : f ( x ′ ) ⊕ Z ∈ B p ′ ( f ( x ′ ))] ≤ 2 m − nC p ′ C p ′ + 1 − log ε β m , n ≤ ε C p ′ − log ε + 1 = m ( 1 m = ⇒ 2 , for n ≥ ) m 2 , for m ≥ m ′ = 2 ( 1 − log ε ) ( 2 ) β m , n ≤ ε and n ≥ m ( 1 C p + ε 2 + 1 − log ε ) = m ( 1 C p + ε ) ε m ◮ Hence, for m > m ε = max { m ′ , n ′ } and n > m ( 1 C p + ε ) , it holds that Pr x ←{ 0 , 1 } m [ g ( f ( x ) ⊕ Z ) � = x ] ≤ α n + β m , n ≤ ε . Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 10 / 21

  49. Why C p = 1 − h ( p ) ?

  50. Why C p = 1 − h ( p ) ? ◮ Let X ← { 0 , 1 } , Z ∼ ( 1 − p , p ) and Y = X ⊕ Z

  51. Why C p = 1 − h ( p ) ? ◮ Let X ← { 0 , 1 } , Z ∼ ( 1 − p , p ) and Y = X ⊕ Z X Y 1 − p 0 0 p p 1 1 1 − p Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 11 / 21

  52. Why C p = 1 − h ( p ) ? ◮ Let X ← { 0 , 1 } , Z ∼ ( 1 − p , p ) and Y = X ⊕ Z X Y 1 − p 0 0 p p 1 1 1 − p ◮ I ( X ; Y ) = H ( Y ) − H ( Y | X ) = H ( Y ) − H ( Z ) = 1 − h ( p ) = C p Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 11 / 21

  53. Why C p = 1 − h ( p ) ? ◮ Let X ← { 0 , 1 } , Z ∼ ( 1 − p , p ) and Y = X ⊕ Z X Y 1 − p 0 0 p p 1 1 1 − p ◮ I ( X ; Y ) = H ( Y ) − H ( Y | X ) = H ( Y ) − H ( Z ) = 1 − h ( p ) = C p ◮ Received bit “gives" C p information about transmitted bit Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 11 / 21

  54. Why C p = 1 − h ( p ) ? ◮ Let X ← { 0 , 1 } , Z ∼ ( 1 − p , p ) and Y = X ⊕ Z X Y 1 − p 0 0 p p 1 1 1 − p ◮ I ( X ; Y ) = H ( Y ) − H ( Y | X ) = H ( Y ) − H ( Z ) = 1 − h ( p ) = C p ◮ Received bit “gives" C p information about transmitted bit ◮ Hence, to recover m bits, we need to send at least m · 1 C p bits Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 11 / 21

  55. Size of bounding ball Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 12 / 21

  56. Size of bounding ball Claim 2 � n � 2 ] and n ∈ N : it holds that � ⌊ pn ⌋ For p ∈ [ 0 , 1 ≤ 2 n · h ( p ) k = 0 k Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 12 / 21

  57. Size of bounding ball Claim 2 � n � 2 ] and n ∈ N : it holds that � ⌊ pn ⌋ For p ∈ [ 0 , 1 ≤ 2 n · h ( p ) k = 0 k � n � ≈ 2 n · h ( p ) ) Proof in a few slides (we already saw that pn Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 12 / 21

  58. Size of bounding ball Claim 2 � n � 2 ] and n ∈ N : it holds that � ⌊ pn ⌋ For p ∈ [ 0 , 1 ≤ 2 n · h ( p ) k = 0 k � n � ≈ 2 n · h ( p ) ) Proof in a few slides (we already saw that pn Corollary 3 For y ∈ { 0 , 1 } n and p ∈ [ 0 , 1 2 ] , let B p ( y ) = { y ∈ { 0 , 1 } n : | y ′ − y | ≤ pn } . Then | B p ( y ) | = � ⌊ pn ⌋ � n � ≤ 2 n · h ( p ) k = 0 k Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 12 / 21

  59. Size of bounding ball Claim 2 � n � 2 ] and n ∈ N : it holds that � ⌊ pn ⌋ For p ∈ [ 0 , 1 ≤ 2 n · h ( p ) k = 0 k � n � ≈ 2 n · h ( p ) ) Proof in a few slides (we already saw that pn Corollary 3 For y ∈ { 0 , 1 } n and p ∈ [ 0 , 1 2 ] , let B p ( y ) = { y ∈ { 0 , 1 } n : | y ′ − y | ≤ pn } . Then | B p ( y ) | = � ⌊ pn ⌋ � n � ≤ 2 n · h ( p ) k = 0 k Very useful estimation. Weaker variants follows by AEP or Stirling, Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 12 / 21

  60. Tightness Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 13 / 21

  61. Tightness ◮ X ← { 0 , 1 } m , Z = ( Z 1 , . . . , Z n ) where Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 13 / 21

  62. Tightness ◮ X ← { 0 , 1 } m , Z = ( Z 1 , . . . , Z n ) where Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) X − → f ( X ) − → f ( X ) ⊕ Z − → g ( f ( X ) ⊕ Z ) ◮ ���� ���� � �� � � �� � m bits n bits Y g ( Y ) Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 13 / 21

  63. Tightness ◮ X ← { 0 , 1 } m , Z = ( Z 1 , . . . , Z n ) where Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) X − → f ( X ) − → f ( X ) ⊕ Z − → g ( f ( X ) ⊕ Z ) ◮ ���� ���� � �� � � �� � m bits n bits Y g ( Y ) ◮ Assuming Pr [ g ( Y ) = X ] ≥ 1 − ε , we show nC p ≥ m ( 1 − ε ) − 1 Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 13 / 21

  64. Tightness ◮ X ← { 0 , 1 } m , Z = ( Z 1 , . . . , Z n ) where Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) X − → f ( X ) − → f ( X ) ⊕ Z − → g ( f ( X ) ⊕ Z ) ◮ ���� ���� � �� � � �� � m bits n bits Y g ( Y ) ◮ Assuming Pr [ g ( Y ) = X ] ≥ 1 − ε , we show nC p ≥ m ( 1 − ε ) − 1 ◮ Compare to nC p > m ( 1 + ε C p ) in Thm 1 Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 13 / 21

  65. Tightness ◮ X ← { 0 , 1 } m , Z = ( Z 1 , . . . , Z n ) where Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) X − → f ( X ) − → f ( X ) ⊕ Z − → g ( f ( X ) ⊕ Z ) ◮ ���� ���� � �� � � �� � m bits n bits Y g ( Y ) ◮ Assuming Pr [ g ( Y ) = X ] ≥ 1 − ε , we show nC p ≥ m ( 1 − ε ) − 1 ◮ Compare to nC p > m ( 1 + ε C p ) in Thm 1 ◮ Hence, lim ε → 0 m n = C p Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 13 / 21

  66. Tightness ◮ X ← { 0 , 1 } m , Z = ( Z 1 , . . . , Z n ) where Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) X − → f ( X ) − → f ( X ) ⊕ Z − → g ( f ( X ) ⊕ Z ) ◮ ���� ���� � �� � � �� � m bits n bits Y g ( Y ) ◮ Assuming Pr [ g ( Y ) = X ] ≥ 1 − ε , we show nC p ≥ m ( 1 − ε ) − 1 ◮ Compare to nC p > m ( 1 + ε C p ) in Thm 1 ◮ Hence, lim ε → 0 m n = C p ◮ By Fano, H ( X | Y ) ≤ h ( ε ) + ε log ( 2 m − 1 ) ≤ 1 + ε m Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 13 / 21

  67. Tightness ◮ X ← { 0 , 1 } m , Z = ( Z 1 , . . . , Z n ) where Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) X − → f ( X ) − → f ( X ) ⊕ Z − → g ( f ( X ) ⊕ Z ) ◮ ���� ���� � �� � � �� � m bits n bits Y g ( Y ) ◮ Assuming Pr [ g ( Y ) = X ] ≥ 1 − ε , we show nC p ≥ m ( 1 − ε ) − 1 ◮ Compare to nC p > m ( 1 + ε C p ) in Thm 1 ◮ Hence, lim ε → 0 m n = C p ◮ By Fano, H ( X | Y ) ≤ h ( ε ) + ε log ( 2 m − 1 ) ≤ 1 + ε m ◮ I ( X ; Y ) = H ( X ) − H ( X | Y ) ≥ m − ε m − 1 = m ( 1 − ε ) − 1 Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 13 / 21

  68. Tightness ◮ X ← { 0 , 1 } m , Z = ( Z 1 , . . . , Z n ) where Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) X − → f ( X ) − → f ( X ) ⊕ Z − → g ( f ( X ) ⊕ Z ) ◮ ���� ���� � �� � � �� � m bits n bits Y g ( Y ) ◮ Assuming Pr [ g ( Y ) = X ] ≥ 1 − ε , we show nC p ≥ m ( 1 − ε ) − 1 ◮ Compare to nC p > m ( 1 + ε C p ) in Thm 1 ◮ Hence, lim ε → 0 m n = C p ◮ By Fano, H ( X | Y ) ≤ h ( ε ) + ε log ( 2 m − 1 ) ≤ 1 + ε m ◮ I ( X ; Y ) = H ( X ) − H ( X | Y ) ≥ m − ε m − 1 = m ( 1 − ε ) − 1 ◮ H ( Y | X ) = H ( X , Y ) − H ( X ) = H ( X , Z ) − H ( X ) = H ( Z ) = nh ( p ) Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 13 / 21

  69. Tightness ◮ X ← { 0 , 1 } m , Z = ( Z 1 , . . . , Z n ) where Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) X − → f ( X ) − → f ( X ) ⊕ Z − → g ( f ( X ) ⊕ Z ) ◮ ���� ���� � �� � � �� � m bits n bits Y g ( Y ) ◮ Assuming Pr [ g ( Y ) = X ] ≥ 1 − ε , we show nC p ≥ m ( 1 − ε ) − 1 ◮ Compare to nC p > m ( 1 + ε C p ) in Thm 1 ◮ Hence, lim ε → 0 m n = C p ◮ By Fano, H ( X | Y ) ≤ h ( ε ) + ε log ( 2 m − 1 ) ≤ 1 + ε m ◮ I ( X ; Y ) = H ( X ) − H ( X | Y ) ≥ m − ε m − 1 = m ( 1 − ε ) − 1 ◮ H ( Y | X ) = H ( X , Y ) − H ( X ) = H ( X , Z ) − H ( X ) = H ( Z ) = nh ( p ) ◮ I ( X ; Y ) = H ( Y ) − H ( Y | X ) = n − nh ( p ) Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 13 / 21

  70. Tightness ◮ X ← { 0 , 1 } m , Z = ( Z 1 , . . . , Z n ) where Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) X − → f ( X ) − → f ( X ) ⊕ Z − → g ( f ( X ) ⊕ Z ) ◮ ���� ���� � �� � � �� � m bits n bits Y g ( Y ) ◮ Assuming Pr [ g ( Y ) = X ] ≥ 1 − ε , we show nC p ≥ m ( 1 − ε ) − 1 ◮ Compare to nC p > m ( 1 + ε C p ) in Thm 1 ◮ Hence, lim ε → 0 m n = C p ◮ By Fano, H ( X | Y ) ≤ h ( ε ) + ε log ( 2 m − 1 ) ≤ 1 + ε m ◮ I ( X ; Y ) = H ( X ) − H ( X | Y ) ≥ m − ε m − 1 = m ( 1 − ε ) − 1 ◮ H ( Y | X ) = H ( X , Y ) − H ( X ) = H ( X , Z ) − H ( X ) = H ( Z ) = nh ( p ) ◮ I ( X ; Y ) = H ( Y ) − H ( Y | X ) = n − nh ( p ) ◮ Hence, m ( 1 − ε ) ≤ I ( X ; Y ) + 1 = n ( 1 − h ( p )) + 1 = nC p + 1 Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 13 / 21

  71. Tightness ◮ X ← { 0 , 1 } m , Z = ( Z 1 , . . . , Z n ) where Z 1 , . . . , Z n iid ∼ ( 1 − p , p ) X − → f ( X ) − → f ( X ) ⊕ Z − → g ( f ( X ) ⊕ Z ) ◮ ���� ���� � �� � � �� � m bits n bits Y g ( Y ) ◮ Assuming Pr [ g ( Y ) = X ] ≥ 1 − ε , we show nC p ≥ m ( 1 − ε ) − 1 ◮ Compare to nC p > m ( 1 + ε C p ) in Thm 1 ◮ Hence, lim ε → 0 m n = C p ◮ By Fano, H ( X | Y ) ≤ h ( ε ) + ε log ( 2 m − 1 ) ≤ 1 + ε m ◮ I ( X ; Y ) = H ( X ) − H ( X | Y ) ≥ m − ε m − 1 = m ( 1 − ε ) − 1 ◮ H ( Y | X ) = H ( X , Y ) − H ( X ) = H ( X , Z ) − H ( X ) = H ( Z ) = nh ( p ) ◮ I ( X ; Y ) = H ( Y ) − H ( Y | X ) = n − nh ( p ) ◮ Hence, m ( 1 − ε ) ≤ I ( X ; Y ) + 1 = n ( 1 − h ( p )) + 1 = nC p + 1 ◮ . . . Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 13 / 21

  72. General communication channel

  73. General communication channel Y = Q ( X ) X Q : [ k ] �→ [ k ] that channel (a probabilistic p 1 , 1 function) 1 1 p 1 , 4 2 2 p i , j = Pr [ Q ( i ) = j ] . p 2 , 4 . . . . . p k , 2 k k Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 14 / 21

  74. General communication channel Y = Q ( X ) X Q : [ k ] �→ [ k ] that channel (a probabilistic p 1 , 1 function) 1 1 p 1 , 4 2 2 p i , j = Pr [ Q ( i ) = j ] . p 2 , 4 . . . . . ◮ x = ( x 1 , . . . , x m ) ∈ { 0 , 1 } m p k , 2 k k Iftach Haitner (TAU) Application of Information Theory, Lecture 5 November 25, 2014 14 / 21

Recommend


More recommend