cee 370 environmental engineering principles
play

CEE 370 Environmental Engineering Principles Lecture #13 - PowerPoint PPT Presentation

Print version Updated: 16 October 2019 CEE 370 Environmental Engineering Principles Lecture #13 Environmental Biology II Metabolism Reading: Mihelcic & Zimmerman, Chapter 5 Davis & Masten, Chapter 3 David Reckhow CEE 370 L#13 1


  1. Print version Updated: 16 October 2019 CEE 370 Environmental Engineering Principles Lecture #13 Environmental Biology II Metabolism Reading: Mihelcic & Zimmerman, Chapter 5 Davis & Masten, Chapter 3 David Reckhow CEE 370 L#13 1

  2. Environmental Microbiology  Types of Microorganisms  Bacteria  Viruses  Protozoa  Rotifers  Fungi  Metabolism  Microbial Disease  Microbial Growth 2 CEE 370 L#13 David Reckhow

  3. Metabolism Energy Production (Catabolism) Biosynthesis (Anabolism) Metabolites (wastes) 3 CEE 370 L#13 David Reckhow

  4. An overview of metabolism From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 4 CEE 370 L#13 David Reckhow

  5. Energy  Source  Light  Chemicals (e.g., glucose)  Storage  ATP  NAD+  Advantages of oxygen as a terminal electron acceptor  aerobic  anaerobic  facultative 5 CEE 370 L#13 David Reckhow

  6. ATP 7.3 kcal per mole 6 CEE 370 L#13 David Reckhow

  7. Nicotinamide Adenine Dinucleotide 7 CEE 370 L#13 David Reckhow

  8. Embden-Meyerhof Pathway Glucose 2 ATP Investment 2 ADP Fructose-1,6-diphosphate 2 NAD+ 4 ADP Pay-back 2 NADH 4 ATP 2 Pyruvate Net result: 2 ATPs or 14.6 kcal/mole 8 CEE 370 L#13 David Reckhow

  9. Advantages of Aerobic Systems If we have aerobic metabolism, rather than fermentation, energy from NADH may be harvested. → + 3- NADH + H + 3 PO + 3ADP + 12 O NAD+ + 3ATP + H O 4 2 2 This gives us 6 more ATPs. Then the pyruvate may be further oxidized to carbon dioxide and water, producing 30 more ATPs. The final tally is 38 ATPs or 277 kcal/mole of glucose. 9 CEE 370 L#13 David Reckhow

  10. Pathways  Generalized view of both aerobic and fermentative pathways  Also showing energy transfer  ATP  NAD From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 10 CEE 370 L#13 David Reckhow

  11. Metabolic Classification  Carbon Source  Heterotrophic: other organic matter  Autotrophic: inorganic carbon (CO 2 )  Energy Source (electron donor)  Chemosynthetic: chemical oxidation  Photosynthetic: light energy  Terminal Electron Acceptor  Aerobic: oxygen  Anaerobic: nitrate, sulfate  Fermentative: organic compounds 11 CEE 370 L#13 David Reckhow

  12. Energy Flow  Storage of Energy  Photosynthesis  Release of Energy  Respiration  Energy transfers by organisms are inherently inefficient  5-50% capture 12 CEE 370 L#13 David Reckhow

  13. Aerobic Respiration  A Redox reaction  Oxidation of Carbon + + + → + − C ( H O ) H O CO 4 H 4 e 2 2 2  Reduction of oxygen or some other terminal electron acceptor + + + − → O 4 H 4 e 2 H O 2 2 13 CEE 370 L#13 David Reckhow

  14. Other TEA: Anaerobic Respiration  Nitrate − − + → + + + C ( H 2 ) O NO N CO HCO H O 3 2 2 3 2  Manganese + + + 4 → 2 + + C ( H 2 ) O Mn Mn CO H O 2 2  Iron + + + 3 → 2 + + C ( H 2 ) O Fe Fe CO H O 2 2  Sulfate − + 2 → + + C ( H 2 ) O SO H S CO H O 4 2 2 2  Fermentation Ecological → + C ( H 2 ) O CH CO Redox 4 2 methanogenesis Sequence 14 CEE 370 L#13 David Reckhow

  15. Terminal Electron Acceptors  Contribution to Iron the oxidation of Reduction Methano- 1% organic matter genesis Sulfate 23% Reduction  Bottom waters of 27% Onondaga Lake, NY  (Effler, 1997) Nitrate Reduction 10% Aerobic 39% 15 CEE 370 L#13 David Reckhow

  16. Energetics  Principles of Gibbs Free Energy and Energy Balance can be applied to microbial growth From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 16 CEE 370 L#13 David Reckhow

  17. Energetics Cont.  Energy Balance  Cell synthesis (R c )  Energy (R a )  Electron acceptor (R d ) = + − R f R f R R s c e a d From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 17 CEE 370 L#13 David Reckhow

  18. f-values and Yield  Portions of electron donor used for:  Synthesis (f s )  Energy (f e )  Values are for rapidly growing cells From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 18 CEE 370 L#13 David Reckhow

  19. Novel Biotransformations  Oxidation  Toluene dioxygenase (TDO) From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 19 CEE 370 L#13 David Reckhow

  20. Overall Types Photoheterotrophs Purple and green non- sulfur bacteria  Carbon Source (rare)  Heterotrophic Photoautotrophs Cyanobacteria, algae & Plants  Autotrophic (primary producers)  Energy Source Chemoheterotrophs Most bacteria, fungi,  Chemosynthetic (organotrophs) protozoa & animals Chemoautotrophs  Photosynthetic Nitrifying, hydrogen , (lithotrophs) iron and sulfur bacteria 20 CEE 370 L#13 David Reckhow

  21. Enzyme Chemistry  Highly dependent on:  Temperature  pH From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 21 CEE 370 L#13 David Reckhow

  22. Enzymatic Reactions  Many ways of illustrating the steps  Substrate(s) bond to active site  Product(s) form via transition state  Product(s) are released 22 CEE 370 L#13 David Reckhow

  23. Note that some Basic Enzyme Kinetics references use k 2 for k -1 , and k 3 for k 2 k 1  Irreversible k 2 → E + S ES → E + P ← k- 1  Single intermediate  The overall rate is determined by the RLS, k 2 d [ S ] d [ P ] ≡ − = = r k 2 ES [ ] dt dt  But we don’t know [ES], so we can get it by the SS mass balance d [ ES ] = = − − 0 k [ E ][ S ] k [ ES ] k [ ES ] − 1 1 2 dt  Again, we only know [E o ] or [E tot ], not free [E], so: ( ) = − − − 0 k [ E ] [ ES ] [ S ] k [ ES ] k [ ES ] − 1 o 1 2 23 CEE 370 L#13 David Reckhow

  24. Reactants, products and Intermediates  Simple Progression of components for simple single intermediate enzyme reaction  Shaded block shows steady state intermediates  Assumes [S]>>[E] t  From Segel, 1975; Enzyme Kinetics 24 CEE 370 L#13 David Reckhow

  25. Basic Enzyme Kinetics II  And solving for [ES], + + = k [ ES ][ S ] k [ ES ] k [ ES ] k [ E ][ S ] − 1 1 2 1 o k [ E ][ S ] = [ ES ] 1 o + + k [ S ] k k − 1 1 2 [ E ][ S ] = [ ES ] o + + k k [ S ] − 1 2 k 1 25 CEE 370 L#13 David Reckhow

  26. Michaelis-Menten  Irreversible k 1 k 2 → E + S ES → E + P ← k- 1  Single intermediate d [ P ] ≡ = r k 2 ES [ ] dt [ E ][ S ] = [ ES ] o + + k k [ S ] − 1 2 k 1 d [ P ] k [ E ][ S ] r [ S ] ≡ = = r 2 o max + k k + + dt [ S ] K [ S ] − 1 2 s k 1 26 CEE 370 L#13 David Reckhow

  27. Michaelis Menten Kinetics  Classical substrate plot rmax 100 80 Reaction Rate 60 0.5r max 40 d [ P ] r [ S ] K s ≡ = max r s + dt K [ S ] 20 0 0 20 40 60 80 100 120 27 CEE 370 L#13 David Reckhow Substrate Concentration

  28. Maud Menten 28 CEE 370 L#17 David Reckhow

  29. Substrate and growth d [ P ] d [ S ] 1 dX ≡ = − = r  If we consider Y dt dt Y dt  We can define a microorganism-specific substrate utilization rate, U dX µ r dt ≡ = ≡ U YX X Y  And the maximum rates are then µ ≡ ≡ U k max max Y µ 1 d [ S ] k [ S ] 1 d [ X ] [ S ] ≡ = µ ≡ = max U and s + s + X dt K [ S ] X dt K [ S ] 29 CEE 370 L#13 David Reckhow

  30. Linearizations  Lineweaver-Burke  Double reciprocal plot Wikipedia version Voet & Voet version CEE 370 L#13 30 David Reckhow

  31.  To next lecture 31 CEE 370 L#13 David Reckhow

Recommend


More recommend