cee 370 environmental engineering principles
play

CEE 370 Environmental Engineering Principles Lecture #13 - PDF document

CEE 370 Lecture #13 10/16/2019 Print version Updated: 16 October 2019 CEE 370 Environmental Engineering Principles Lecture #13 Environmental Biology II Metabolism Reading: Mihelcic & Zimmerman, Chapter 5 Davis & Masten, Chapter 3


  1. CEE 370 Lecture #13 10/16/2019 Print version Updated: 16 October 2019 CEE 370 Environmental Engineering Principles Lecture #13 Environmental Biology II Metabolism Reading: Mihelcic & Zimmerman, Chapter 5 Davis & Masten, Chapter 3 David Reckhow CEE 370 L#13 1 Environmental Microbiology  Types of Microorganisms  Bacteria  Viruses  Protozoa  Rotifers  Fungi  Metabolism  Microbial Disease  Microbial Growth 2 CEE 370 L#13 David Reckhow Lecture #13 Dave Reckhow 1

  2. CEE 370 Lecture #13 10/16/2019 Metabolism Energy Production Biosynthesis (Catabolism) (Anabolism) Metabolites (wastes) 3 CEE 370 L#13 David Reckhow An overview of metabolism From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 4 CEE 370 L#13 David Reckhow Lecture #13 Dave Reckhow 2

  3. CEE 370 Lecture #13 10/16/2019 Energy  Source  Light  Chemicals (e.g., glucose)  Storage  ATP  NAD+  Advantages of oxygen as a terminal electron acceptor  aerobic  anaerobic  facultative 5 CEE 370 L#13 David Reckhow ATP 7.3 kcal per mole 6 CEE 370 L#13 David Reckhow Lecture #13 Dave Reckhow 3

  4. CEE 370 Lecture #13 10/16/2019 Nicotinamide Adenine Dinucleotide 7 CEE 370 L#13 David Reckhow Embden-Meyerhof Pathway Glucose 2 ATP Investment 2 ADP Fructose-1,6-diphosphate 2 NAD+ 4 ADP Pay-back 2 NADH 4 ATP 2 Pyruvate Net result: 2 ATPs or 14.6 kcal/mole 8 CEE 370 L#13 David Reckhow Lecture #13 Dave Reckhow 4

  5. CEE 370 Lecture #13 10/16/2019 Advantages of Aerobic Systems If we have aerobic metabolism, rather than fermentation, energy from NADH may be harvested.  NADH + H + 3 PO + 3ADP + + 3- 12 O NAD+ + 3ATP + H O 4 2 2 This gives us 6 more ATPs. Then the pyruvate may be further oxidized to carbon dioxide and water, producing 30 more ATPs. The final tally is 38 ATPs or 277 kcal/mole of glucose. 9 CEE 370 L#13 David Reckhow Pathways  Generalized view of both aerobic and fermentative pathways  Also showing energy transfer  ATP  NAD From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 10 CEE 370 L#13 David Reckhow Lecture #13 Dave Reckhow 5

  6. CEE 370 Lecture #13 10/16/2019 Metabolic Classification  Carbon Source  Heterotrophic: other organic matter  Autotrophic: inorganic carbon (CO 2 )  Energy Source (electron donor)  Chemosynthetic: chemical oxidation  Photosynthetic: light energy  Terminal Electron Acceptor  Aerobic: oxygen  Anaerobic: nitrate, sulfate  Fermentative: organic compounds 11 CEE 370 L#13 David Reckhow Energy Flow  Storage of Energy  Photosynthesis  Release of Energy  Respiration  Energy transfers by organisms are inherently inefficient  5-50% capture 12 CEE 370 L#13 David Reckhow Lecture #13 Dave Reckhow 6

  7. CEE 370 Lecture #13 10/16/2019 Aerobic Respiration  A Redox reaction  Oxidation of Carbon       C ( H O ) H O CO 4 H 4 e 2 2 2  Reduction of oxygen or some other terminal electron acceptor      O 4 H 4 e 2 H O 2 2 13 CEE 370 L#13 David Reckhow Other TEA: Anaerobic Respiration  Nitrate        C ( H 2 ) O NO N CO HCO H O 3 2 2 3 2  Manganese       4 2 C ( H 2 ) O Mn Mn CO H O 2 2  Iron    3  2   C ( H 2 ) O Fe Fe CO H O 2 2  Sulfate      2 C ( H 2 ) O SO H S CO H O 4 2 2 2  Fermentation Ecological   C ( H 2 ) O CH CO Redox 4 2 methanogenesis Sequence 14 CEE 370 L#13 David Reckhow Lecture #13 Dave Reckhow 7

  8. CEE 370 Lecture #13 10/16/2019 Terminal Electron Acceptors  Contribution to Iron the oxidation of Reduction Methano- 1% organic matter genesis Sulfate 23% Reduction  Bottom waters of 27% Onondaga Lake, NY  (Effler, 1997) Nitrate Reduction 10% Aerobic 39% 15 CEE 370 L#13 David Reckhow Energetics  Principles of Gibbs Free Energy and Energy Balance can be applied to microbial growth From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 16 CEE 370 L#13 David Reckhow Lecture #13 Dave Reckhow 8

  9. CEE 370 Lecture #13 10/16/2019 Energetics Cont.  Energy Balance  Cell synthesis (R c )  Energy (R a )  Electron acceptor (R d )    R f R f R R s c e a d From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 17 CEE 370 L#13 David Reckhow f-values and Yield  Portions of electron donor used for:  Synthesis (f s )  Energy (f e )  Values are for rapidly growing cells From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 18 CEE 370 L#13 David Reckhow Lecture #13 Dave Reckhow 9

  10. CEE 370 Lecture #13 10/16/2019 Novel Biotransformations  Oxidation  Toluene dioxygenase (TDO) From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 19 CEE 370 L#13 David Reckhow Overall Types Photoheterotrophs Purple and green non- sulfur bacteria  Carbon Source (rare)  Heterotrophic Photoautotrophs Cyanobacteria, algae  Autotrophic & Plants (primary producers)  Energy Source Chemoheterotrophs Most bacteria, fungi,  Chemosynthetic (organotrophs) protozoa & animals Chemoautotrophs  Photosynthetic Nitrifying, hydrogen , (lithotrophs) iron and sulfur bacteria 20 CEE 370 L#13 David Reckhow Lecture #13 Dave Reckhow 10

  11. CEE 370 Lecture #13 10/16/2019 Enzyme Chemistry  Highly dependent on:  Temperature  pH From: Sawyer, McCarty & Parkin, 1994; also: Sawyer & McCarty, 1978 21 CEE 370 L#13 David Reckhow Enzymatic Reactions  Many ways of illustrating the steps  Substrate(s) bond to active site  Product(s) form via transition state  Product(s) are released 22 CEE 370 L#13 David Reckhow Lecture #13 Dave Reckhow 11

  12. CEE 370 Lecture #13 10/16/2019 Note that some Basic Enzyme Kinetics references use k 2 for k -1 , and k 3 for k 2 k 1  Irreversible k 2 → E + S ES  E + P ← k- 1  Single intermediate  The overall rate is determined by the RLS, k 2 d [ S ] d [ P ]     r k 2 ES [ ] dt dt  But we don’t know [ES], so we can get it by the SS mass balance d [ ES ]     0 k [ E ][ S ] k [ ES ] k [ ES ]  1 1 2 dt  Again, we only know [E o ] or [E tot ], not free [E], so:       0 k [ E ] [ ES ] [ S ] k [ ES ] k [ ES ] 1 o  1 2 23 CEE 370 L#13 David Reckhow Reactants, products and Intermediates  Simple Progression of components for simple single intermediate enzyme reaction  Shaded block shows steady state intermediates  Assumes [S]>>[E] t  From Segel, 1975; Enzyme Kinetics 24 CEE 370 L#13 David Reckhow Lecture #13 Dave Reckhow 12

  13. CEE 370 Lecture #13 10/16/2019 Basic Enzyme Kinetics II  And solving for [ES],    k [ ES ][ S ] k [ ES ] k [ ES ] k [ E ][ S ] 1  1 2 1 o k [ E ][ S ]  [ ES ] 1 o   k [ S ] k k  1 1 2 [ E ][ S ]  [ ES ] o   k k [ S ]  1 2 k 1 25 CEE 370 L#13 David Reckhow Michaelis-Menten  Irreversible k 1 k 2 → E + S ES  E + P ← k- 1  Single intermediate d [ P ]   r k 2 ES [ ] dt [ E ][ S ]  o [ ES ]   k k [ S ]  1 2 k 1 d [ P ] k [ E ][ S ] r [ S ]    r 2 o max  k k   dt K [ S ] [ S ]  1 2 s k 1 26 CEE 370 L#13 David Reckhow Lecture #13 Dave Reckhow 13

  14. CEE 370 Lecture #13 10/16/2019 Michaelis Menten Kinetics  Classical substrate plot rmax 100 80 Reaction Rate 60 0.5r max 40 d [ P ] r [ S ] K s   max r s  dt K [ S ] 20 0 0 20 40 60 80 100 120 27 CEE 370 L#13 David Reckhow Substrate Concentration Maud Menten 28 CEE 370 L#17 David Reckhow Lecture #13 Dave Reckhow 14

  15. CEE 370 Lecture #13 10/16/2019 Substrate and growth d [ P ] d [ S ] 1 dX     r  If we consider Y dt dt Y dt  We can define a microorganism-specific substrate utilization rate, U dX  r dt    U YX X Y  And the maximum rates are then    U k max max Y  1 d [ S ] k [ S ] 1 d [ X ] [ S ]      max U and s  s  X dt K [ S ] X dt K [ S ] 29 CEE 370 L#13 David Reckhow Linearizations  Lineweaver-Burke  Double reciprocal plot Wikipedia version Voet & Voet version CEE 370 L#13 30 David Reckhow Lecture #13 Dave Reckhow 15

  16. CEE 370 Lecture #13 10/16/2019  To next lecture 31 CEE 370 L#13 David Reckhow Lecture #13 Dave Reckhow 16

Recommend


More recommend