categorical relativistic quantum theory
play

Categorical relativistic quantum theory Chris Heunen Pau Enrique - PowerPoint PPT Presentation

Categorical relativistic quantum theory Chris Heunen Pau Enrique Moliner Sean Tull 1 / 15 Idea Hilbert modules: naive quantum field theory Idempotent subunits: base space in any category Support: where morphisms live Causal


  1. Categorical relativistic quantum theory Chris Heunen Pau Enrique Moliner Sean Tull 1 / 15

  2. Idea ◮ Hilbert modules: naive quantum field theory ◮ Idempotent subunits: base space in any category ◮ Support: where morphisms live ◮ Causal structures: relativistic quantum information 2 / 15

  3. Base space Let X be locally compact Hausdorff space. C 0 ( X ) = { f : X → C cts | ∀ ε > 0 ∃ K ⊆ X cpt: f ( X \ K ) < ε } C f ε X K C b ( X ) = { f : X → C cts | ∃� f � < ∞ ∀ t ∈ X : | f ( t ) | ≤ � f �} 3 / 15

  4. Hilbert spaces C -module H with complete C -valued inner product tensor product over C monoidal category tensor unit C tensor unit I complex numbers C scalars I → I finite dimensional dual objects adjoints dagger orthonormal basis commutative dagger Frobenius structure fin-dim C*-algebra dagger Frobenius structure 4 / 15

  5. Hilbert modules C 0 ( X )-module H with complete C 0 ( X )-valued inner product tensor product over C 0 ( X ) monoidal category tensor unit C 0 ( X ) tensor unit I complex numbers C b ( X ) scalars I → I finitely presented dual objects adjoints dagger finite coverings commutative dagger Frobenius structure unif fin-dim C*-bundles dagger Frobenius structure ‘Scalars are not numbers’ 4 / 15

  6. Bundles of Hilbert spaces Bundle E ։ X , each fibre Hilbert space, operations continuous E t E X t 5 / 15

  7. Bundles of Hilbert spaces Bundle E ։ X , each fibre Hilbert space, operations continuous, with E t E X t 5 / 15

  8. Bundles of Hilbert spaces Bundle E ։ X , each fibre Hilbert space, operations continuous, with E t E X t Hilbert C 0 ( X )-modules ≃ bundles of Hilbert spaces over X sections vanishing at infinity ← � E ։ X E �→ localisation 5 / 15

  9. Idempotent subunits Definition : ISub( C ) = { s : S ֌ I | id S ⊗ s : S ⊗ S → S ⊗ I iso } / ≃ 6 / 15

  10. Idempotent subunits Definition : ISub( C ) = { s : S ֌ I | id S ⊗ s : S ⊗ S → S ⊗ I iso } / ≃ ◮ Analysis: ISub( Hilb C 0 ( X ) ) = { S ⊆ X open } : ‘idempotent subunits are open subsets of base space’ 6 / 15

  11. Idempotent subunits Definition : ISub( C ) = { s : S ֌ I | id S ⊗ s : S ⊗ S → S ⊗ I iso } / ≃ ◮ Analysis: ISub( Hilb C 0 ( X ) ) = { S ⊆ X open } : ‘idempotent subunits are open subsets of base space’ ◮ Logic: ISub(Sh( X )) = { S ⊆ X open } : ‘idempotent subunits are truth values’ 6 / 15

  12. Idempotent subunits Definition : ISub( C ) = { s : S ֌ I | id S ⊗ s : S ⊗ S → S ⊗ I iso } / ≃ ◮ Analysis: ISub( Hilb C 0 ( X ) ) = { S ⊆ X open } : ‘idempotent subunits are open subsets of base space’ ◮ Logic: ISub(Sh( X )) = { S ⊆ X open } : ‘idempotent subunits are truth values’ ◮ Order theory: ISub( Q ) = { x ∈ Q | x 2 = x ≤ 1 } for quantale Q : ‘idempotent subunits are side-effect-free observations’ 6 / 15

  13. Idempotent subunits Definition : ISub( C ) = { s : S ֌ I | id S ⊗ s : S ⊗ S → S ⊗ I iso } / ≃ ◮ Analysis: ISub( Hilb C 0 ( X ) ) = { S ⊆ X open } : ‘idempotent subunits are open subsets of base space’ ◮ Logic: ISub(Sh( X )) = { S ⊆ X open } : ‘idempotent subunits are truth values’ ◮ Order theory: ISub( Q ) = { x ∈ Q | x 2 = x ≤ 1 } for quantale Q : ‘idempotent subunits are side-effect-free observations’ � � S = S 2 } ◮ Algebra: ISub( Mod R ) = { S ⊆ R ideal ‘idempotent subunits are idempotent ideals’ 6 / 15

  14. Semilattice Proposition: ISub( C ) is a semilattice, ∧ = ⊗ , 1 = id I T I S Caveat: C must be firm, i.e. s ⊗ id T monic, and size issue 7 / 15

  15. Semilattice Proposition: ISub( C ) is a semilattice, ∧ = ⊗ , 1 = id I T I S Caveat: C must be firm, i.e. s ⊗ id T monic, and size issue id ⊥ SemiLat FirmCat ISub 7 / 15

  16. Spatial categories Call C spatial when ISub( C ) is frame ⊥ SemiLat Frame ⊣ ISub ⊣ ISub ⊥ SpatCat FirmCat ([ C op , Set ] supp , ⊗ Day ) ( C , ⊗ ) 8 / 15

  17. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I id ⊗ s 9 / 15

  18. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I id ⊗ s f { s | s supports f } supp C 2 Pow(ISub( C )) 9 / 15

  19. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I id ⊗ s Monoidal functor: supp( f ) ∧ supp( g ) ≤ supp( f ⊗ g ) f { s | s supports f } supp C 2 Pow(ISub( C )) 9 / 15

  20. Support Say s ∈ ISub( C ) supports f : A → B when A B f ≃ B ⊗ S B ⊗ I id ⊗ s Monoidal functor: supp( f ) ∧ supp( g ) ≤ supp( f ⊗ g ) f { s | s supports f } supp C 2 Pow(ISub( C )) � F F Q ∈ Frame universal with F ( f ) = � { F ( s ) | s ∈ ISub( C ) supports f } 9 / 15

  21. Restriction � � Full subcategory C s of A with id A ⊗ s invertible: ◮ monoidal with tensor unit S � � ◮ coreflective: C ⊥ C s � � � � ◮ tensor ideal: if A ∈ C and B ∈ C s , then A ⊗ B ∈ C s � � ◮ monocoreflective: counit ε I monic (and id A ⊗ ε I iso for A ∈ C s ) 10 / 15

  22. Restriction � � Full subcategory C s of A with id A ⊗ s invertible: ◮ monoidal with tensor unit S � � ◮ coreflective: C ⊥ C s � � � � ◮ tensor ideal: if A ∈ C and B ∈ C s , then A ⊗ B ∈ C s � � ◮ monocoreflective: counit ε I monic (and id A ⊗ ε I iso for A ∈ C s ) Proposition : ISub( C ) ≃ { monocoreflective tensor ideals in C } 10 / 15

  23. Localisation A graded monad is a monoidal functor E → [ C , C ] ( η : A → T (1), µ : T ( t ) ◦ T ( s ) → T ( s ⊗ t )) � � Lemma : s �→ C s is an ISub( C )-graded monad 11 / 15

  24. Localisation A graded monad is a monoidal functor E → [ C , C ] ( η : A → T (1), µ : T ( t ) ◦ T ( s ) → T ( s ⊗ t )) � � Lemma : s �→ C s is an ISub( C )-graded monad universal property of localisation for Σ = { id E ⊗ s | E ∈ C } ( − ) ⊗ S � � s = C [Σ − 1 ] C C ≃ F inverting Σ D 11 / 15

  25. Spacetime What if X is more than just space? Lorentzian manifold with time orientation: s ≪ t : there is future-directed timelike curve s → t s ≺ t : there is future-directed non-spacelike curve s → t chronological causal I + ( t ) = { s ∈ X | t ≪ s } J + ( t ) = { s ∈ X | t ≺ s } future I − ( t ) = { s ∈ X | s ≪ t } J − ( t ) = { s ∈ X | s ≺ t } past 12 / 15

  26. Spacetime What if X is more than just space? Lorentzian manifold with time orientation: s ≪ t : there is future-directed timelike curve s → t s ≺ t : there is future-directed non-spacelike curve s → t chronological causal I + ( t ) = { s ∈ X | t ≪ s } J + ( t ) = { s ∈ X | t ≺ s } future I − ( t ) = { s ∈ X | s ≪ t } J − ( t ) = { s ∈ X | s ≺ t } past If S ⊆ X open, then I + ( S ) = � s ∈ S I + ( s ) = � s ∈ S J + ( s ) = J + ( S ) I + and I − give ‘future’ and ‘past’ operators 12 / 15

  27. Causal structure Closure operator on partially ordered set P is function C : P → P : ◮ if s ≤ t , then C ( s ) ≤ C ( t ); ◮ s ≤ C ( s ); ◮ C ( C ( s )) ≤ C ( s ). Causal structure on C is pair C ± of closure operators on ISub( C ) 13 / 15

  28. Causal structure Closure operator on partially ordered set P is function C : P → P : ◮ if s ≤ t , then C ( s ) ≤ C ( t ); ◮ s ≤ C ( s ); ◮ C ( C ( s )) ≤ C ( s ). Causal structure on C is pair C ± of closure operators on ISub( C ) Proposition : if r ∈ ISub( C ) and C is closure operator on C , � � then D ( s ) = C ( s ) ∧ r is closure operator on C r ’Causal structure restricts’ 13 / 15

  29. Teleportation ’Restriction = propagation’ Bob Alice pair creation compact category + support + causal structure = teleportation only successful on intersection of future sets 14 / 15

  30. Further ◮ relativistic quantum information protocols ◮ causality ◮ proof analysis ◮ control flow ◮ data flow ◮ concurrency ◮ graphical calculus 15 / 15

  31. Complements s Subunit is split when id S I SISub( C ) is a sub-semilattice of ISub( C ) (don’t need firmness)

  32. Complements s Subunit is split when id S I SISub( C ) is a sub-semilattice of ISub( C ) (don’t need firmness) If C has zero object, ISub( C ) has least element 0 s, s ⊥ are complements if s ∧ s ⊥ = 0 and s ∨ s ⊥ = 1

  33. Complements s Subunit is split when id S I SISub( C ) is a sub-semilattice of ISub( C ) (don’t need firmness) If C has zero object, ISub( C ) has least element 0 s, s ⊥ are complements if s ∧ s ⊥ = 0 and s ∨ s ⊥ = 1 Proposition : when C has finite biproducts, then s, s ⊥ ∈ SISub( C ) are complements if and only if they are biproduct injections Corollary : if ⊕ distributes over ⊗ , then SISub( C ) is a Boolean algebra (universal property?)

  34. Linear logic if T : C → C monoidal monad, Kl( T ) is monoidal semilattice morphism { η I ◦ s | s ∈ ISub( C ) , T ( s ) is monic in C } → ISub(Kl( T )) is not injective, nor surjective

  35. Linear logic if T : C → C monoidal monad, Kl( T ) is monoidal semilattice morphism { η I ◦ s | s ∈ ISub( C ) , T ( s ) is monic in C } → ISub(Kl( T )) is not injective, nor surjective model for linear logic: ∗ -autonomous category C with finite products, monoidal comonad !: ( C , ⊗ ) → ( C , × ) (then Kl(!) cartesian closed) if ε epi, then ISub( C , × ) ≃ ISub(Kl(!) , × ) (but hard to compare to ISub( C , ⊗ ))

Recommend


More recommend