case study iv geometrical modeling of the heart and the
play

Case Study IV: Geometrical Modeling of the heart and the head - PowerPoint PPT Presentation

Case Study IV: Geometrical Modeling of the heart and the head Moritz Dannhauer Motivation Geometrical modeling for simulation Mesh Content Meshing BioMesh3D new Meshing Approach: Cleaver Pipeline Seg3D Shapeworks Image


  1. Case Study IV: Geometrical Modeling of the heart and the head Moritz Dannhauer

  2. Motivation • Geometrical modeling for simulation Mesh

  3. Content • Meshing • BioMesh3D • new Meshing Approach: Cleaver

  4. Pipeline Seg3D Shapeworks Image ¡Acq. ¡& BioMesh3D Processing Discrete ¡points e.g., ¡sensors SegmentaAon ¡& ¡ Structure ¡IdenAficaAon Geometric ¡Modeling SCIRun & ¡Fi;ng ¡Structures Boundary ¡ Meshing condiAons Volume ¡Modeling Measured ¡ Data V i s u a SimulaAon/EsAmaAon l i z ImageVis3D a A o n n u map3D R VerificaAon/ValidaAon I C S

  5. Meshing CAD-based Meshing

  6. Meshing CAD- based Meshing

  7. Three Scenarios • Low detail models • Medium detail models • High detail models

  8. Challenges of Meshing irregular features multi-material adaptive mesh run time etc. small meshes

  9. What is BioMesh3D? • Tetrahedral conforming volume meshing • Adaptive, multi material, subvoxel accuracy • Goal: Determine accurate boundary surfaces • Tetrahedralization (external): TetGen M. Meyer et. al, IEEE, 2008

  10. Meshing in Biology Non-manifold Interfaces

  11. Conformal Meshing Non-Conformal Conformal Mesh Mesh A B

  12. Conformal Meshes better? Non-Conformal Conformal Mesh Mesh A B Still an open question!

  13. Meshing packages and many more ...

  14. Example - Heart • Oxford Rabbit Heart (BioMesh3D )

  15. Cross Section of Heart BioMesh3D Tarantula

  16. Comparison - Run Time BioMesh3D Tarantula 30 24 22.5 Time in 15 [hours] 7.5 0.5 0

  17. Comparison - Complexity BioMesh3D Tarantula 6 5.9 4.5 Mesh 4.4 nodes in 3 [xMillion] 1.5 0

  18. Comparison - Adaptivity BioMesh3D Tarantula 200000 175028 Size variability 150000 of FE - Stddev. of 100000 Volumes in [uM^3] 50000 39171 0

  19. Comparison - Element Quality scaled inscribed (I) to BioMesh3D Regular Tarantula circumscribed ratio (C) optimal Elements (SICR) 1 1 SICR= 3*I/C 0.75 0.71 C 0.65 I SICR 0.5 0.25 Flat 0

  20. BioMesh3D-Pros/Cons Single Time Point • Pro: Local refinement • Con: Reaction/Diffusion

  21. BioMesh3D - Properties Pros: Cons: - Robustness + Conforming - Usability + Highly Adaptive - Run time + Preserve smooth/ - Sufficient node density small features - Element Quality

  22. New meshing Approach: “Cleaver” min(SICR)>=const "Lattice Cleaving: Conforming Tetrahedral Meshes of Multimaterial Domains with Bounded Quality” Bronson, J., Levine, J., and Whitaker, R. To appear in Proceedings of the 21st International Meshing Roundtable (San Jose, CA, Oct 7 - 10, 2012)

  23. Element quality • Dihedral Angle • Condition number

  24. Comparison - Torso Cleaver Mesh Result

  25. Comparison - Torso Cleaver BioMesh3D CGAL 8 1E+10 1E+09 2.94E+09 1E+08 6 1E+07 2.42E+07 5.42E+06 1E+06 4 7.4 1E+05 1E+04 2 1E+03 0.4 1E+02 0 0 1E+01 Condition min(Dihedral Angle) number

  26. Comparison - Head 8 Materials

  27. Comparison - Head BioMesh3D Cleaver Mesh Time in nodes in [hours] [xMillion] 9 200 8.6 168 6.75 150 6.4 4.5 100 2.25 50 0.7 0 0

  28. Cleaver in Action

  29. Cleaver • First Release: Fall 2012 • Features: • Incredibly fast • Conforming • Guarantees on Quality • Input support: SCIRun - NRRD • Output supports: • SCIRun pts/elems • TetGen node/eles • MATLAB Binaries

Recommend


More recommend