Neutrino-Driven Convection in Stalled Supernova Cores MICRA, Stockholm 2015 David Radice 1 1 Walter Burke Fellow, TAPIR, California Institute of Technology Collaborators: E.Abdikamalov, S.Couch, R.Haas, C.Ott, E.Schnetter
The Supernova Problem Core-Collapse Supernovae: • End of massive stars • Birthplace of heavy elements, neutron stars, black holes … • Regulate star formation • … Cassiopeia-A Problem: how do they explode?
Shock Revival by Neutrinos From Janka 2001
The Roles of Turbulence Regulates accretion Turbulent pressure Transports heat Increase dwelling time Difficult to simulate! See talk by Takiwaki
Resolution Dependance 200 s 27ULR f heat 1.05 s 27ULR f heat 1.05 s 27LR f heat 1.05 s 27LR f heat 1.05 R shock,avg [km] 180 s 27MR f heat 1.05 s 27MR f heat 1.05 s 27IR f heat 1.05 s 27IR f heat 1.05 160 s 27HR f heat 1.05 s 27HR f heat 1.05 ULR 3.78 km 140 LR 1.89 km 120 MR 1.42 km 0.06 IR 1.24 km 0.04 σ HR 1.06 km 0.02 0 20 40 60 80 100 120 140 Resolutions t − t bounce [ms] From Abdikamalov et al. 2015 Explosion more difficult at higher resolution!
Turbulent Energy Spectrum 10 26 E ( ` ) [erg cm − 3 ] 10 25 ` − 1 ` − 1 s 27ULR f heat 1.05 s 27ULR f heat 1.05 s 27LR f heat 1.05 s 27LR f heat 1.05 s 27MR f heat 1.05 s 27MR f heat 1.05 10 24 s 27IR f heat 1.05 s 27IR f heat 1.05 t − t bounce = 90 ms s 27HR f heat 1.05 s 27HR f heat 1.05 1 10 100 `
Open Questions • When is the resolution good enough? • How does neutrino-driven convection work? • What is the main role of turbulence? Our approach: local and semi-global simulations
Local Simulations • Periodic box • Anisotropic • Mildly compressible • Compare different methods PPM+HLLC, N=512 3 , Vorticity
Energy Cascade (I) 10 − 1 • Energy injection scale E ( k ) k 5 / 3 10 − 2 • Inertial range 1 . 2 • Bottleneck 0 . 8 Π ( k ) / ✏ • Dissipation range 0 . 4 0 . 0 10 0 10 1 10 2 k PPM+HLLC, N = 512 3
Energy Cascade (II) 10 − 1 E ( k ) k 5 / 3 • Global simulations ~ 64 3 N = 64 3 10 − 2 bottleneck dominated! N = 128 3 N = 256 3 N = 512 3 1 . 2 • 2x: start to converge 0 . 8 Π ( k ) / ✏ • 8x: inertial range 0 . 4 0 . 0 10 0 10 1 10 2 k PPM+HLLC
Semi-Global Simulations Local simulations: instructive, but very simplified • Global simulations: expensive, more difficult to interpret • 5 0.3 Semi-global simulations s 0.2 0 Stationary initial conditions • 0.1 Ω [ rad/ms ] 90º 3D wedge domain • − 5 0.0 s Simplified neutrino cooling/ • − 10 − 0.1 heating − 15 − 0.2 Ω BV Simplified nuclear • − 20 − 0.3 dissociation treatment 50 100 150 200 r [ km ] Semi-global simulations: initial data
2x Ref 4x ∆ 𝛴 =1.8º 12x
Global Dynamics (I) 400 Ref. 4x 12x 2x 6x r shock, avg [ km ] 300 200 1D 0 200 400 600 t [ ms ] Shock radius
Global Dynamics (II) 0.8 τ adv τ heat Low resolution • 0.4 simulations easier to explode 120 τ adv = M gain Good convergence of 100 • [ms] ˙ M large scale quantities 80 100 Caveat: convergence • 80 is going to be worse τ heat = E bind 60 [ms] for nearly-critical ˙ Q 40 models Ref. 4x 12x 20 2x 6x 0 0 200 400 600 t [ ms ] Typical timescales
Turbulent Cascade 10 − 9 Ref. 4x 12x 2x 6x 20x E ( k ) ( 1 cm × k ) 5/3 10 − 10 10 − 11 10 − 12 10 − 7 10 − 6 10 − 5 k [ 1/cm ] Turbulent energy spectra
Turbulent Convection 0 4 π h F H i [ ⇥ 10 50 erg/ s ] 8 Ref. 6x H [ ⇥ 10 50 erg/ s ] 2x 12x � 20 4 4x � 40 Ref. 6x 0 � 60 2x 12x 4 π F 0 4x � 80 � 4 0 4 π h F K i [ ⇥ 10 50 erg/ s ] K [ ⇥ 10 50 erg/ s ] 0 � 2 � 4 � 5 4 π F 0 � 6 � 10 � 8 � 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 � 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 ( r � r g ) / ( r s � r g ) ( r � r g ) / ( r s � r g ) Total energy fluxes Turbulent energy fluxes
Turbulent Pressure 0.4 r / h r 2 p i 0.2 R r 0.0 Ref. 4x 12x 2x 6x � 0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 ( r � r g ) / ( r s � r g ) Turbulent pressure
Conclusions • Convergence: large scales converge even at moderate resolution ( ∆ 𝜘 ≲ 2º) • Turbulence is only resolved at very high resolutions ( ∆ 𝜘 ≲ 0.1º) • Kolmogorov spectrum • Turbulence pressure dominates over energy transfer
Initial Data 10 11 0.05 5 0.3 s υ r 0.2 10 10 0.00 0 0.1 Ω [ rad/ms ] ρ [ g/cm 3 ] 10 9 − 0.05 − 5 υ / c ρ 0.0 s 10 8 − 0.10 − 10 − 0.1 10 7 − 0.15 − 15 − 0.2 Ω BV 10 6 − 0.20 − 20 − 0.3 50 100 150 200 50 100 150 200 r [ km ] r [ km ] Stationary initial data
Recommend
More recommend