Right heart function during parasympathetic blockade and beta-adrenergic stimulation in humans. Kyhl K, Ahtarovski KK, Iversen K, Lønborg J, Engstrøm T, Vejlstrup NG, Lav Madsen P Volume curves 100 ● ● ● ● Right ventricular volume (mL/m2) ● ● 80 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 60 ● ● ● ● ● ● ● ● ● ● ● ● ● 40 ● ● ● ● ● ● ● ● ● ● ● ● 20 ● ● Rest ● Glycopyrrolate Dobutamine ● 0 1 5 10 15 20 25 Cardiac phase
-30 mmHg, 5 min -30 mmHg, 10 min -35 mL (-22%) -15 mL (-13%) -26 mL/slag (-30%)* -5 mL/slag (-6%) ^ -22 mL (-15%) -6 mL (-4%) -6 mL/slag (-5%) -6 mL/slag (-6%) LV filling is upheld by the lung blood pool
Hyperpolarized magnetic resonance spectroscopy FIG 1 B C Solvent , e.g. 50 mL water heated to 130 °C Microwave irradiation Cryostat, e.g. 1 K and 5 T A 1.000.000 Dissolution 100.000 CH 3 Polarisation (ppm) DNP Pyruvic acid (detection) Relaxation 10.000 CO enriched with 13 C in C-1 position 1.000 13 C OO - + 13C 100 Cooling 1H 10 e Electron Paramagnetic e - 1 Agent, dissolves in 0,1 1 10 100 pyruvic acid Temperature (K)
FIG 3 Hauge Lauritzen et al ., 2014
M E T H O D S
Myocardial and Renal Glucose Metabolism in Type 2 Diabetic Rats: Effect of Liraglutide. Lauritzen MH, Magnusson P, Hove JD, Madsbad S, Laustsen C, Ardenkjaer-Larsen JH, Tyler D, Lav Madsen P.
Myocardial and Renal Glucose Metabolism in Type 2 Diabetic Rats: Effect of Liraglutide. Lauritzen MH, Magnusson P, Hove JD, Madsbad S, Laustsen C, Ardenkjaer-Larsen JH, Tyler D, Lav Madsen P. L a c ta te m u s c le A la n in e m u s c le 1 .5 1 .0 C o n tro l * C o n tro l L a c ta te /p y ru v a te ra tio * D ia b e tic D ia b e tic 0 .8 1 .0 0 .6 0 .4 0 .5 0 .2 0 .0 0 .0 V e h ic le L ig u ra tid e V e h ic le L ig u ra tid e V e h ic le L ig u ra tid e V e h ic le L ig u ra tid e
Myocardial and Renal Glucose Metabolism in Type 2 Diabetic Rats: Effect of Liraglutide. Lauritzen MH, Magnusson P, Hove JD, Madsbad S, Laustsen C, Ardenkjaer-Larsen JH, Tyler D, Lav Madsen P. A la n in e H e a rt L a c ta te H e a rt 0 .3 0 .3 5 *** A la n in e /P y ru v a te ra tio L a c ta te /P y ru v a te ra tio C o n tro l C o n tro l D ia b e tic D ia b e tic * 0 .3 0 0 .2 0 .2 5 0 .1 0 .2 0 0 .0 0 .1 5 e e e e l l d d c c i i i t i t e e e e h h a a l l d d e r e r c c i i u u V V i i t t g g h h a a i i e r e r L L u u V V g g i i L L
Per Lav Madsen MD DMSc The heart in shock
Circulatory transit times Right ventricle Left ventricle Pulmonary transit time Systemic transit time
The heart in shock Per Lav Madsen Consultant in Cardiology ESC and SCMRI level III, MD DMSc
Central hypovolaemia • Activation of the venous pump • An decrease in systolic venous compliance centralizes the blood volume
Gadolinium contrast Non-ischamic cardiomyopathy
Evaluation of Primary Mitral Valve Insufficiency by Magnetic Resonance Imaging Mark Aplin, Kasper Kyhl, Jenny Bjerre, Nikolaj Ihlemann, John P. Greenwood, Sven Plein, Akhlaque Uddin, Niels Tønder, Nis Baun Høst, Malin Glindvad Ahlström, Jens Hove, Christian Hassager, Kasper Iversen, Niels G. Vejlstrup, and Per Lav Madsen Leeds Institute of Cardiovascular and Metabolic Medicine, Leeds University, UK, and Depts. Cardiology, Copenhagen University Hospitals of Rigshospitalet, Hillerød, Bispebjerg, Hvidovre and Herlev, Copenhagen, Denmark
C A R D A I C M R I
R E S U L T S
Severe primary • LVEDV (i) > 108 mL m -2 • LA max(i) > 73 mL m -2 • Total left heart volume (i) > 188 mL m -2 • Pulmonary vein diameter > 2 cm • LVSV > 70 mL m -2 + low aortic outflow • LVEDV/RVEDV ratio > 1.2 (often >1.6) • MI regurgitation fraction > 0.30 S N O S I U L C N • MI regurgitation volume > 40 mL O C
LVEF > 37% LVEF < 37% RVEDV 158 mL RVEDV 143 mL LVEDV 209 mL LVEDV 168 mL The difference is seen with LVEF < 37%
you + happy birthday Niels
40,0% 30,0% END!DIASTOLIC%VOLUME%CHANGE,%%% 20,0% 10,0% 0,0% 0% 10% 20% 30% 40% 50% 60% 70% 80% !10,0% !20,0% !30,0% !40,0% , right ventricle , left ventricle
ype 2 Diabetic Rats: Effect of Liraglutide. Lauritzen n C, Ardenkjaer-Larsen JH, Tyler D, Lav Madsen P.
LM LAD LcX
Kyhl Kristensen et al . Am J Physiol 2013;305:1004-9
Dorte Ørsøe 110563-1114
• Flow in all thoracic vessels • Cardiac volumes • Myocardial, pulmonary, and organ perfusion • Spectroscopy of energy-rich phosphate levels • Hyperpolarized magnetic resonance spectroscopy
FIG 5 Pyr
V 181 mL (100 mL/m2) VEDV 138 mL (75 mL/m2) VSV 127 mL, RVSV 78 mL 116/42 mL (36%), net 74 mL
Circulation. 2012 Sep 18;126(12):1452-60. doi: 10.1161/ CIRCULATIONAHA.111.083600. Epub 2012 Aug 9. Aortic regurgitation quantification using cardiovascular magnetic resonance: association with clinical outcome. Myerson SG1, d'Arcy J, Mohiaddin R, Greenwood JP, Karamitsos TD, Francis JM, Banning AP, Christiansen JP, Neubauer S. 113 patients with echocardiographic moderate or severe AR were monitored for up to 9 years (mean 2.6 ± 2.1 years) following a CMR scan, and the progression to symptoms or other indications for surgery was monitored. AR quantification identified outcome with high accuracy: 85% of the 39 subjects with regurgitant fraction >33% progressed to surgery (mostly within 3 years) in comparison with 8% of 74 subjects with regurgitant fraction ≤ 33% (P<0.0001). CMR-derived left ventricular end-diastolic volume >246 mL had good, although lower, discriminatory ability (area under the curve 0.88), but the combination of this measure with regurgitant fraction provided the best discriminatory power.
Stedig-Ehrenborg et al ., 2013
Recommend
More recommend