Can we solve the Planes of Satellites Problem by invoking special host halo properties or baryonic effects? Bonus: Preview of the classical satellite plane of the MW in light of Gaia DR2 Marcel S. Pawlowski Schwarzschild Fellow at Leibniz-Institute for Astrophysics, Potsdam ✉ marcel.pawlowski@uci.edu @8minutesold Do you live-tweet? Tired of missing half the talk while typing? This is the solution: Canned Tweets™ . Just scan and tweet! Collaborators: James Bullock , Benoit
See review (Pawlowski, 2018) Planes of Satellite Galaxies • Observed satellite galaxy systems (Milky Way, Andromeda, Centaurus A) are flattened and show signs of kinematic correlation indicative of co-rotation • Frequency of as strongly flattened and kinematically coherent satellite systems in Λ CDM simulations is very low (on order 0.1%). Black ellipse: M31 Dashed line: orientation of satellite plane Contour: PAndAS footprint Obscured by MW disk Obscured by MW disk Larger symbols: LMC & SMC Pawlowski, Kroupa & Jerjen Ibata et al. Müller, Pawlowski, Jerjen & Lelli (2012, MNRAS, 423, 1109) (2013, Nature, 493, 62) (2018, Science, 359, 534)
(“POS” problem?) Can we solve the Planes of Satellites " problem by saying MW/M31 are special? Buck et. al (2015), based on 21 hosts: • High host halo concentration (proxy for early formation) gives more narrow satellite planes. • Solves problem if MW & M31 formed early and/or have high concentration halos. 18 2 . 0 16 We test these findings with a number of 1 . 8 14 improvements: 1 . 6 12 • 60 (Phat)ELVIS hosts, similar parameter space. 1 . 4 10 c − 2 z 0 . 5 1 . 2 • Compare to randomized satellite systems, too. 8 1 . 0 • Consider PAndAS survey footprint. 6 0 . 8 4 • Employ quantitative tests of correlations. 0 . 6 Fit 2 Prada et al . (2012) 0 . 4 1 σ scatter 0 240 260 280 300 320 340 360 380 r vir [kpc]
Pawlowski, Bullock, Kelley & Famaey; 2019, ApJ, 875, 105 We employ many different tests to look for correlations … I’ll spare you the details, check out the paper if interested.
Pawlowski, Bullock, Kelley & Famaey; 2019, ApJ, 875, 105 Correlation with halo mass / viral radius? Correlation seen if 30 satellites selected from virial volume. ELVISall ELVISall ELVISall Volume : PAndAS Volume : Rvir Volume : Rvir Positions : Rand Positions : Sim Positions : Sim Volume: PAndAS Volume: Rvir 120 120 120 more satellites in plane fit ➡ 360 360 360 ➡ Absolute plane width sensitive to overall ⬅ thinner satellite plane extent of satellite distribution. 100 100 100 345 345 345 80 80 80 330 330 330 min ∆ rms [kpc] min ∆ rms [kpc] min ∆ rms [kpc] r vir r vir r vir 315 315 315 60 60 60 300 300 300 40 40 40 285 285 285 20 20 20 270 270 270 0 0 0 0 0 0 5 5 5 10 10 10 15 15 15 20 20 20 25 25 25 30 30 30 N inPlane N inPlane N inPlane
Pawlowski, Bullock, Kelley & Famaey; 2019, ApJ, 875, 105 Correlation with halo mass / viral radius? Correlation seen if 30 satellites selected from virial volume. ELVISall ELVISall Volume : PAndAS Volume : Rvir Positions : Rand Positions : Sim Volume: PAndAS Volume: Rvir 120 120 more satellites in plane fit ➡ 360 360 ➡ Absolute plane width sensitive to overall ⬅ thinner satellite plane extent of satellite distribution. 100 100 345 345 ➡ Same present in distributions drawn 80 80 330 330 from isotropy. min ∆ rms [kpc] min ∆ rms [kpc] r vir r vir ➡ Not a feature of Λ CDM. 315 315 60 60 300 300 40 40 285 285 20 20 270 270 0 0 0 0 5 5 10 10 15 15 20 20 25 25 30 30 N inPlane N inPlane
Pawlowski, Bullock, Kelley & Famaey; 2019, ApJ, 875, 105 Correlation with halo mass / viral radius? Correlation seen if 30 satellites selected from virial volume. ELVISall Volume : PAndAS Positions : Sim Volume: PAndAS Volume: Rvir 120 360 ➡ Absolute plane width sensitive to overall extent of satellite distribution. 100 345 ➡ Same present in distributions drawn 80 330 from isotropy. min ∆ rms [kpc] r vir ➡ Not a feature of Λ CDM. 315 60 300 40 285 Need to select satellites from mock- 20 PAndAS volume. 270 0 0 5 10 15 20 25 30 N inPlane
Pawlowski, Bullock, Kelley & Famaey; 2019, ApJ, 875, 105 Correlation with halo mass / viral radius? Correlation seen if 30 satellites selected from virial volume. ELVISall Volume : PAndAS Positions : Sim Volume: PAndAS 120 360 ➡ Absolute plane width sensitive to overall extent of satellite distribution. 100 345 ➡ Same present in distributions drawn 80 330 from isotropy. min ∆ rms [kpc] r vir ➡ Not a feature of Λ CDM. 315 60 300 40 285 Need to select satellites from mock- 20 PAndAS volume. 270 0 0 5 10 15 20 25 30 N inPlane
Pawlowski, Bullock, Kelley & Famaey; 2019, ApJ, 875, 105 Correlation with No halo mass / viral radius? Correlation seen if 30 satellites selected from virial volume. ELVISall Volume : PAndAS Positions : Sim 120 more satellites in plane fit ➡ 360 ➡ Absolute plane width sensitive to overall ⬅ thinner satellite plane extent of satellite distribution. 100 345 ➡ Same present in distributions drawn 80 330 from isotropy. min ∆ rms [kpc] r vir ➡ Not a feature of Λ CDM. 315 60 300 40 285 Need to select satellites from mock- 20 PAndAS volume. 270 Then no correlation with viral mass/radius. 0 0 5 10 15 20 25 30 N inPlane
Pawlowski, Bullock, Kelley & Famaey; 2019, ApJ, 875, 105 Correlation with halo concentration / formation time? No correlation of satellite plane width or kinematic coherence with c -2 or z 0.5 . ELVISall ELVISall Volume : PAndAS Volume : Rvir Positions : Sim Positions : Sim ELVISall ELVISall Volume : PAndAS Volume : Rvir Positions : Sim Positions : Sim 120 60 120 60 more satellites in plane fit ➡ more satellites co-orbit ➡ 2 . 0 16 16 16 1 . 8 100 50 100 50 14 14 14 ⬅ thinner satellite plane ⬅ thinner satellite plane 1 . 6 12 12 12 40 40 80 80 min ∆ rms [kpc] min ∆ rms [kpc] min ∆ rms [kpc] min ∆ rms [kpc] 1 . 4 10 10 10 c − 2 c − 2 c − 2 z 0 . 5 1 . 2 30 60 30 60 8 8 8 1 . 0 20 40 20 40 6 6 6 0 . 8 0 . 6 10 20 10 20 4 4 4 Observed M31 Observed M31 satellite plane satellite plane 0 . 4 2 2 2 0 0 0 0 8 9 10 11 12 13 14 15 0 0 5 5 10 10 15 15 20 20 25 25 30 0 5 10 15 20 25 30 N inPlane N inPlane N inPlane N Coorb
Pawlowski, Bullock, Kelley & Famaey; 2019, ApJ, 875, 105 Correlation with halo concentration / formation time? No correlation of satellite plane width or kinematic coherence with c -2 or z 0.5 . Not even if satellites selected from virial volume. ELVISall Volume : Rvir Positions : Sim ELVISall Volume : Rvir Positions : Sim 120 120 more satellites in plane fit ➡ 2 . 0 16 1 . 8 100 100 14 ⬅ thinner satellite plane 1 . 6 12 80 80 min ∆ rms [kpc] min ∆ rms [kpc] 1 . 4 10 c − 2 z 0 . 5 1 . 2 60 60 8 1 . 0 40 40 6 0 . 8 0 . 6 20 20 4 0 . 4 2 0 0 0 5 10 15 20 25 30 0 5 10 15 20 25 30 N inPlane N inPlane
Pawlowski, Bullock, Kelley & Famaey; 2019, ApJ, 875, 105 Correlation with No halo concentration / formation time? No correlation of satellite plane width or kinematic coherence with c -2 or z 0.5 . Not even if satellites selected from virial volume. ELVISall Volume : Rvir Positions : Sim ELVISall Volume : Rvir Positions : Sim 120 120 more satellites in plane fit ➡ 2 . 0 16 1 . 8 100 100 14 ⬅ thinner satellite plane 1 . 6 12 80 80 min ∆ rms [kpc] min ∆ rms [kpc] 1 . 4 We can not confirm results of Buck et al. (2015). 10 c − 2 z 0 . 5 1 . 2 60 60 Early formation / high concentration of MW/M31 8 does not solve Planes of Satellites Problem 1 . 0 40 40 6 0 . 8 0 . 6 20 20 4 0 . 4 2 0 0 0 5 10 15 20 25 30 0 5 10 15 20 25 30 N inPlane N inPlane
Pawlowski, Bullock, Kelley & Famaey; 2019, ApJ, 875, 105 Correlation with No being in a paired configuration of hosts? No difference whether in a pair of hosts or isolated. Confirms similar result for VPOS-like selection (Pawlowski & McGaugh 2014). Environment Volume : PAndAS Positions : Simulation 80 ⬅ more correlated orbits ELVIS isolated 70 ELVIS paired 60 ⬅ thinner satellite plane min ∆ rms [kpc] 50 40 30 observed for MW 20 10 ⬅ thinner satellite planes more satellites in plane fit ➡ 0 0 5 10 15 20 25 N inPlane
Pawlowski, Bullock, Kelley & Famaey; 2019, ApJ, 875, 105 Correlation with existence of a central disk galaxy potential? PhatELVIS: 12 MW analogs once with and without analytically grown central disk. Kelley et al. (2019)
Recommend
More recommend