can one trust results from
play

Can One trust Results from Effective Lagrangians & Global Fits? - PowerPoint PPT Presentation

Improving Estimates for (g-2) : Can One trust Results from Effective Lagrangians & Global Fits? M. Benayoun LPNHE Paris 6/7 OUTLINE HVP Evaluations & Effective Lagrangians The HLS Model, its Breaking & Scope The


  1. Improving Estimates for (g-2) μ : Can One trust Results from Effective Lagrangians & Global Fits? M. Benayoun LPNHE Paris 6/7

  2. OUTLINE  HVP Evaluations & Effective Lagrangians  The HLS Model, its Breaking & Scope  The VMD Strategy for HVP Evaluations : Global Fits  Issues with the Global Fit Method  χ 2 : How to deal with spectrum scale uncertainties ?  An Iteration Method and its Monte Carlo Checking  Updated Global Fits to e + e - Annihilations  Updated Evaluations of NP Contributions to HVP  Updated Evaluations of the (g-2) µ Discrepancy  Conclusions 2

  3. HVP Estimates & Effective Lagrangians • Non Perturbative contributions to Hadronic VP : s cut 1       a ( H ) ds K ( s ) ( e e H s , ) Measured Xsection   i i 3 4 s th • Effective Lagrangians imply physics correlations       among the e e H i 1,..... i • EL cross-sections : fed through a global fit → ( param. values & error covariance matrix) : Measured Xsection Model Xsection 3

  4. NSK2:: Breaking the HLS Model The HLS Model & Breaking e + e - data handling framework : HLS Lagrangian M. Harada & K. Yamawaki Phys. Rep. 381 (2003) 1  equiped with two breaking schemes:  BKY mechanism : M.Bando et al . Nucl. Phys. B259 (1985) 493 (SU 2 & SU 3 brk) M.Benayoun et al . Phys. Rev. D58 (1998) 074006 M.Hashimoto Phys. Rev. D54 (1996) 5611  vector meson mixing : M.Benayoun et al . EPJ C55 (2008) 199 M.Benayoun et al . EPJ C65 (2010) 211 (s-dependent)  Latest Model Status : M.Benayoun et al . EPJ C72 (2012) 1848 4

  5. HLS : A Global VMD Model (I) • The (Broken) Hidden Local Symmetry (BHLS) model :  Unified VMD framework which encompasses e + e - → π π /KKbar / π γ / η γ / π π π & τ→ππ ν τ & PV γ , P γγ decays & η / η’  γπ π / γγ & …  BHLS :: (almost) an empty shell : [ α em , G F , f π , V ud , V us ,m π ’s, m K ’s , m η , , m η’ ]  Main Limitation :  Up to the ≈ φ mass region ( ≈ 1.05 GeV) 5

  6. HLS : A Global VMD Model (I) • The (Broken) Hidden Local Symmetry (BHLS) model :  Unified VMD framework which encompasses e + e - → π π /KKbar / π γ / η γ / π π π & τ→ππ ν τ & PV γ , P γγ decays & η / η’  γπ π / γγ & …  BHLS :: (almost) an empty shell : [ α em , G F , f π , V ud , V us ,m π ’s, m K ’s , m η , m η’ ]  Main Limitation :  Up to the ≈ φ mass region ( ≈ 1.05 GeV) 6

  7. HLS : A Global VMD Model (I) • The (Broken) Hidden Local Symmetry (BHLS) model :  Unified VMD framework which encompasses e + e - → π π /KKbar / π γ / η γ / π π π & τ→ππ ν τ & PV γ , P γγ decays & η / η’  γπ π / γγ & …  BHLS :: (almost) an empty shell : [ α em , G F , f π , V ud , V us ,m π ’s, m K ’s , m η , , m η’ ]  Main Limitation : M.Benayoun et al . EPJ C72 (2012) 1848  Up to the ≈ φ mass region ( ≈ 1.05 GeV) 7

  8. HLS : A Global VMD Model (II) • BHLS correlates several physics channels : e + e - → π π /KKbar / π γ / η γ / π π π & τ→ππ ν τ & PV γ , P γγ decays & φ→ππ (Br ratio and phase) 1. BHLS : overconstrained & numerically driven by more than 40 data sets 2. New paradigm : statistics on any channel ( π 0 γ , τ ) ≈ additional statistics for any other ( π + π - / η γ ) 3. All available exp. data sets about these channels are not necessarily consistent within BHLS 8

  9. VMD Strategy for HVP Estimates  Perform a global fit :: if successful then  1/ VMD correlations are fulfilled by DATA  2/ HLS form factors & fit parameters values & errors covariance matrix should lead to better estimates of HVP contributions to g-2 for   π + π - / / / π γ / η γ / η’ γ / π π π up to 1.05 GeV K K / K K L S 9

  10. VMD Strategy for HVP Estimates  Perform a global fit :: if successful then  1/ VMD correlations are fulfilled by DATA  2/ HLS form factors & fit parameters values & errors covariance matrix should lead to better estimates of HVP contributions to g-2 for   π + π - / / / π γ / η γ / η’ γ / π π π up to 1.05 GeV K K / K K L S 10

  11. Can One trust Global Fits? • Outcome of a Minimization Tool : χ 2 (& MINUIT) implemented using assumptions on : • Error Covariance Matrices (metrics of χ 2 distance) • Global Scale Uncertainties (possibly s-dependent) the • Th. models (Non-linear parameter dependence) Even if fits are 100% successful : check if numerical conclusions can be trusted

  12. How to Check Global Fits? • Several Expectations :  Parameter residuals OK : Unbiased  Parameter Pulls OK : Gaussians G(m=0, σ =1)  Probability distributions OK: Uniform on [0,1] • → Fit parameters values & Fit Error Cov. Matrix OK So : Any derived info. X 0 + Δ X (val./err.) OK BUT truth should be known → MC methods

  13. How to Check Global Fit Methods? • Several Expectations :  Parameter residuals OK : Unbiased  Parameter Pulls OK : Gaussians G(m=0, σ =1)  Probability distributions OK: Uniform on [0,1] • → Fit parameters values & Fit Error Cov. Matrix OK So : Any derived info. X 0 ± Δ X (val./err.) VALID BUT truth should be known → MC methods

  14. How to Check Global Fit Methods? • Several Expectations :  Parameter residuals OK : Unbiased  Parameter Pulls OK : Gaussians G(m=0, σ =1)  Probability distributions OK: Uniform on [0,1] • → Fit parameters values & Fit Error Cov. Matrix OK So : Any derived info. X 0 ± Δ X (val./err.) VALID BUT truth should be known → MC methods

  15. How to Check Global Fit Methods? • Several Expectations :  Fit parameter residuals OK : Unbiased  parameter Pulls OK : Gaussians G(m=0, σ =1)  Probability distributions OK: Uniform on [0,1] • → Fit parameters values & Fit Error Cov. Matrix OK So : Any derived info. X 0 ± Δ X (val./err.) VALID BUT truth should be known → MC methods

  16. χ 2 Function : Global Scale Issues • Spectrum ( E ) subject to one scale uncertainty λ E [G(0, σ )] and stat. err. cov. V E :           T       2 1 2 2 / m M A V m M A E E E E E E E model data Global scale « Penalty term » If no global scale : Stat. & uncorrel. syst         T  2 1 m M V m M E E E E what about A : Specific to E? Common to {E}?

  17. s-dependent Global Scale Factors • several independent scale factors (necessarily s- dependent) affect the spectrum (E) • The α th scale factor : λ α =µ α (0,1) σ α (s) • Define the vectors B α (s) = A(s) σ α (s) • then T              2 1 m M µ B V m M µ B µ µ            E E E E M.Benayoun et al . EPJ C73 (2013)2453 « Penalty term »

  18. Scale Uncertainty(ies) M. Benayoun et al EPJ C73 (2013)2453 • Minimize :           T       2 1 2 2 m M A V m M A / 2 / • Solving for λ ( ) leads to:      0      1      T    2 2 T m M V A A m M   the      1      / A V A    • with : T 1 T 1  A V m M  2 How to choose A ? How to check A ? 18

  19. NA7 Residuals ( χ 2 /N≈2)!    m M spacelike timelike      m M A M. Benayoun et al EPJ C73 (2013)2453 19

  20. NA7 Residuals ( χ 2 /N≈2)!    m M Spacelike & timelike spacelike timelike      m M A M. Benayoun et al EPJ C73 (2013)2453 20

  21. An Effect of Scale Uncertainty • Experimental quantity M ? m? or m- λ A ? • Contribution to HVP : ∫ K(s) M(s) =? ∫ K(s) m(s)

  22. An Effect of Scale Uncertainty • Experimental quantity M ? m? or m- λ A ? • Contribution to HVP : ∫ K(s) M(s) =? ∫ K(s) m(s) s cut 1       a ( H ) ds K ( s ) ( e e H s , )   i i 3 4 s th

  23. An Effect of Scale Uncertainty • Experimental quantity M ? m? or m- λ A ? • Contribution to HVP should be corrected ∫ K(s) M(s) = ∫ K(s) m(s) - λ ∫ K(s) A(s) • Correction Evaluation requires λ & A(s) → fits!

  24. An Effect of Scale Uncertainty • Experimental quantity M ? m? or m- λ A ? • Contribution to HVP should be corrected ∫ K(s) M(s) = ∫ K(s) m(s) - λ ∫ K(s) A(s) • Correction Evaluation requires λ & A(s) → but fits provide M(s) directly

  25. How to choose/check A? • The best choice is A= M truth G. D’ Agostini NIM A346 (1994)306 M truth is unknown ! • A= m may be not optimum: M.Benayoun et al . EPJ C73 (2013)2453 → biased(?) information → How to unbias? • A solution : Iterative Method R.D.Ball et al JHEP 1005 (2010)075 iteration 0 : A= m → it=0 fit. func. : M 0 iteration 1 : A= M 0 → it=1 fit. func. : M 1 ETC….. up to convergence M n = M truth the  Also A=M (varying) if some good starting point

Recommend


More recommend