ca catc tchme hment nt an and riv d river er model dels s
play

Ca Catc tchme hment nt an and riv d river er model dels s as - PowerPoint PPT Presentation

Project Development of data-modelling system and the decision support tool for the integrated marine and inland water management Ca Catc tchme hment nt an and riv d river er model dels s as a tool to estimate nitrogen and


  1. Project „ Development of data-modelling system and the decision support tool for the integrated marine and inland water management “ Ca Catc tchme hment nt an and riv d river er model dels s as a tool to estimate nitrogen and phosphorus load – Estonian approach Peeter Ennet, Eero Pihelgas May 2015, Uppsala

  2. Gen ener eral al pri rinc nciple iples for for ap applic icatio ations ns DATABASE - Initial data DATABASE - Model results - Initial data - Web-based DATABASE - … - Model results - Initial data DATABASE - Map-based - … - Model results - Initial data - … - Module-based - Model results - … - Language Exchange - Automatic installation CLIENT - Automatic data filling Client application WEBSERVER - Logical checks - Data visualisation CLIENT - Data formatting - Input sending - Calculation functions Client application - User version storage Client database - Applications - Data visualisation CLIENT - Client setting - … - Userfriendly support - Input sending Client application - Client versions Client database - Data visualisation - User manual - Client setting - Input sending - Client versions - Commented code Client database - Client setting - Client versions

  3. Gen ener eral al ac acti tivit itie ies - Applications parameters and algorithms - Input data (the presence, location, quality) - Data linking - Upgrading databases - Prototypes of web applications (programming and testing) - Continuous cooperation with IT developer - Training

  4. Ch Char aract acteri eristic tic sc scales ales (model del se selec ection) tion)

  5. Model dels Dynamic (process-based) models Steady-state (coefficient-based) models - GETM+ERGOM - Local N,P runoff model (Porijõgi model) - SWAT - PolFlow - HYPE - Mesaw - SOIL-N - Qual2 - INCA - Vollenweider lake model - Estmodel - Qual2 + Vollenweider + Estmodel

  6. GETM – cir irculat ulatio ion n mode del Domain: Baltic Sea with 1 nm horizontal resolution and 40 layers adaptive coordinates. Atmospheric forcing: HIRLAM regionalized ERA40 hindcast (BaltAN65+ dataset) River runoff and nutrient loads : Balt-HYPE 30 main rivers Open boundaries : S, T, sea elevation Period : 1966 - 2006

  7. ERGO RGOM – nu nutr trie ient nts s mode del Phytoplankton Nutrients : (NO 3 , NH 4 ) (PO 4 ) Sediments :

  8. SWAT - Soil and Water Assessment Tool Hydr ydrolo ologic gic cy cycle cle Spatial Scale: watershed or river basin Data Organization: subbasins or hydrologic response units (HRU’s) Time scale: Continuous time model (long term yield model) based on a daily scale Not for a single event Data Inputs: weather, soil properties, topography, vegetation, and land management practices

  9. Qual Qu al ( (ri river er wat ater er qual ualit ity y model del) 1. Steady state hydraulics 2. Diurnal heat budget 3. Diurnal water- quality kinetics 4. Point and non-point loads are simulated 5. One dimensional, well-mixed Q i = Q i-1 + Q in,i – Q ab,i

  10. Qu Qual al ( (mode odel l vari ariable ables) s)

  11. Qu Qual al ( (growth & N & N, , P lim imit itat atio ion) n) M ichaelis-Menten equation m = f(T; min(P,N); I) 1,0 0,9 0,8 Leonor Michaelis Maud Menten Growth rate m 0,7 (1875-1949) (1879-1960) 0,6 0,5 CS = 5 0,4 Leonor Michaelis PO CS = 10 m  m 0,3 (1875-1949) 4 CS = 20 0,2 S  max P PO 0,1 4 0,0 0 20 40 60 80 100  NO NH Concentration C m  m 3 4   max N NO NH S 3 4

  12. Estm tmode odel l (es esti timatio ation n of di diffus used ed pollut lutio ion) n) IA IB III IB III The main ideas: Sources of nutrients are divided into different II groups. Group-specific coefficients are used in calculations. Diffused runoff of nutrients depends on water discharge. The model output is annual N,P runoff and it allows roughly to estimate the diffused land-based pollution.

  13. Vollen lenwei eider der lak ake mo e model del The Vollenweider phosphorus mass loading model can be expressed as: TP in  TP s t  out ( 1 ) w where TP in – input, TP out - output, t w - lake hydraulic retention time, s - first-order rate constant for phosphorus loss.

  14. Estm tmod odel el + Q + Qua ual + V + Vollen enwei eide der r mode del Inflow WOLLENWEIDER LAKE MODEL Open boundary 1 (diffused source) 2 ESTMODEL Point source QUAL RIVER MODEL 3 Water use 4 5 Diffused water use 6 Open boundary

  15. Mode del exp xper erim iment ents The model system (Estmodel + Qual) was applied for the Pärnu river basin: - river length 143 km - basin area 6911 km 2 - 637 villages and 11 towns - population in the River Pärnu basin is ca190 000 - ca 55% of population live in cities, - in Pärnu ca 52 000 The upper reaches of the River Pärnu and its tributaries flow through the best agricultural lands in Estonia. In the middle course the landscape changes radically. There is an increase of large mire systems and extensive forests. The river’s daily runoff is measured at 9 hydrological stations and the water quality parameters are monitored at 9 hydro-chemical stations in the River Pärnu basin.

  16. Pär ärnu nu ri river er ba basi sin

  17. Proble blems s - the la e lack ck of da data, a, par aral allel lel segmen se ents ts, , ti tiny y tr trib ibut utari aries es, , .. ... . Elevation 90 USING AVAILABLE DATA CORRECTED LINE 80 (connecting minimum points) 70 60 50 40 30 20 10 0 1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346 369 392 415 438 461 484 507 530 553 Distance

  18. Estm tmod odel el res esul ults ts – nu nutr trie ient nts s run unoff

  19. Qu Qual al2 2 res esul ults ts – nu nutr trie ient nts s in in ri river er

  20. Qu Qual al2 2 res esul ults ts – nu nutr trie ient nts s in in ri river er

  21. Water Specialists ’ Desktop dev.kindlus.ee/wsd?hl=en

Recommend


More recommend