bouncing rolling and sticking of stiff and soft bodies
play

Bouncing, rolling and sticking of stiff and soft bodies Amabile - PowerPoint PPT Presentation

Bouncing, rolling and sticking of stiff and soft bodies Amabile Tatone Dipartimento di Ingegneria delle Strutture, delle Acque e del Terreno Universit` a dellAquila - Italy INTAS Project: Some Nonclassical Problems For Thin Structures ,


  1. Bouncing, rolling and sticking of stiff and soft bodies Amabile Tatone Dipartimento di Ingegneria delle Strutture, delle Acque e del Terreno Universit` a dell’Aquila - Italy INTAS Project: Some Nonclassical Problems For Thin Structures , Rome, 22-23 Jan 2008

  2. Based on a joint work with: Alessandro Contento and Angelo Di Egidio Dipartimento di Ingegneria delle Strutture, delle Acque e del Terreno Universit` a dell’Aquila - Italy

  3. Micro switch

  4. repulsive force repulsive + adhesive forces d

  5. Rigid body A motion of the body B is described at each time t by a placement defined on the paragon shape D : p : D × I → E characterized by the following representation: p ( x , t ) = p o ( t ) + R ( t )( x − x o ) where R ( t ) : V → V is a rotation in the translation space of E . Test velocity fields: w ( x ) = w o + WR ( t )( x − x o ) , with sym W = 0

  6. Affine body A motion of the body B is described at each time t by a placement defined on the paragon shape D : p : D × I → E characterized by the following representation: p ( x , t ) = p o ( t ) + F ( t )( x − x o ) where F ( t ) : V → V is linear and such that det F ( t ) > 0 Test velocity fields: w ( x ) = w o + GF ( t )( x − x o )

  7. Rigid body Balance principle: � � b · w dV + q · w dA = 0 ∀ w , ∀ t D ∂ D Equations of motion: − m ¨ p o ( t ) − m g + f ( t ) = 0 � R ( t ) J R ( t ) T + M ( t ) R ( t ) T � − ¨ skw = 0

  8. Affine body Balance principle: � � − S · GF vol D + b · w dV + q · w dA = 0 ∀ w , ∀ t D ∂ D Equations of motion: − m ¨ p o ( t ) − m g + f ( t ) = 0 � � F ( t ) J F ( t ) T + F ( t ) T = 0 − ¨ M ( t ) − S ( t ) vol D

  9. Mass and Euler tensor: � m := ρ dV ; D � J := ρ ( x − x o ) ⊗ ( x − x o ) dV D Total force and moment tensor: � f ( t ) := q ( x , t ) dA ; ∂ D � M ( t ) := ( x − x o ) ⊗ q ( x , t ) dA ∂ D

  10. Piola stress and material properties Frame indifference: skw SF T = 0 S · WF = 0 ∀ W | sym W = 0 ⇒ Mooney-Rivlin strain energy (incompressible material): ϕ ( F ) := c 10 ( ı 1 ( C ) − 3) + c 01 ( ı 2 ( C ) − 3) Stress response (energetic + reactive + dissipative): SF T = � S ( F ) F T − π I + µ ˙ FF − 1 F = d ϕ ( F ) S ( F ) F T = 2( c 10 F F T − c 01 F − T F − 1 ) S ( F ) · ˙ � � ⇒ dt Dissipation principle: S · ˙ F − d ϕ ( F ) / dt ≥ 0 ⇒ µ ≥ 0

  11. Contact force constitutive laws Repulsive force: q r ( x , t ) = α r d ( x , t ) − ν r n Damping force: q d ( x , t ) = − β d d ( x , t ) − ν d ( n ⊗ n ) ˙ p ( x , t ) Frictional force: q f ( x , t ) = − β f d ( x , t ) − ν f ( I − n ⊗ n ) ˙ p ( x , t ) Adhesive force: q a ( x , t ) = − β a ( d ( x , t ) − ν aa − d ( x , t ) − ν ar ) n

  12. Contact force constitutive laws The contact forces are surface forces per unit deformed area: � q ( x , t ) = q j ( x , t ) k ( x , t ) j Area change factor: k ( x , t ) := � F ( t ) − T n ∂ D ( x ) � det( F ( t )) n ∂ D ( x ) outward unit normal vector

  13. n o d ( x , t ) d ( x , t ) := ( p ( x , t ) − o ) · n

  14. n o d 0 d ( x , t ) := ( p ( x , t ) − o ) · n

  15. Contact force constitutive laws Repulsive force: q r ( x , t ) = α r d ( x , t ) − ν r n Damping force: q d ( x , t ) = − β d d ( x , t ) − ν d ( n ⊗ n ) ˙ p ( x , t ) Frictional force: q f ( x , t ) = − β f d ( x , t ) − ν f ( I − n ⊗ n ) ˙ p ( x , t ) Adhesive force: q a ( x , t ) = − β a ( d ( x , t ) − ν aa − d ( x , t ) − ν ar ) n

  16. q repulsive force repulsive + adhesive forces repulsive + adhesive forces d ν r = 8 , ν aa = 3 , ν ar = 6

  17. Numerical simulations 001 011 R 002 012 L d L d R θ t t

  18. Numerical simulations rocking on a sloping plane spinning top 021 022 023 3D-101 3D-111 3D-102 3D-112 bouncing and rolling dice throwing 031 032 033 034 035 3D-201 3D-211 elastic bouncing and oscillations 3D-202 3D-212 041 112 200 214 215 216 217 318 319 adhesion and detachment 501 502 503 505

  19. The end

  20. Appendix Cauchy stress 1 T = SF T det F Pressure π It is the reactive part of T . In an incompressible solid/fluid the velocity fields are said to be isochoric . The trace of the velocity gradient turns out to be zero. A reactive stress, whose power is zero for any isochoric velocity field, has to be a spherical tensor − π I : π I · G = π tr G = 0

  21. Appendix Mooney-Rivlin It is a hyperelastic material model used for rubber-like materials as well as for biological tissues. The principal invariants of C := FF T are defined as ı 2 ( C ) := F ⋆ · F ⋆ ı 1 ( C ) := F · F , where F ⋆ := F − T det F is the cofactor of F .

  22. References ◮ Nicola Pugno, Towards a Spiderman suit: large invisible cables and self-cleaning releasable superadhesive materials, J. Phys.: Condens. Matter , 19, 2007. ◮ Alessandro Granaldi, Paolo Decuzzi, The dynamic response of resistive microswitches: switching time and bouncing, J. Micromech. Microeng. , 16, 2006. ◮ Jiunn-Jong Wu, Adhesive contact between a nano-scale rigid sphere and an elastic half-space, J. Phys. D: Appl. Phys. , 39, 2006 ◮ Z. J. Guo, N. E. McGruer, G. G. Adams, Modeling, simulation and measurement of the dynamic performance of an ohmic contact, electrostatically actuated RF MEMS switch, J. Micromech. Microeng. , 17, 2007 ◮ Makoto Ashino, Alexander Schwarz, Hendrik H¨ olscher, Udo D. Schwarz, and Roland Wiesendanger, Interpretation of the atomic scale contrast obtained on graphite and single-walled carbon nanotubes in the dynamic mode of atomic force microscopy, Nanotechnology , 16, 2005

  23. Supplementary references ◮ Gianfranco Capriz, Paolo Podio-Guidugli, Whence the boundary conditions in modern continuum physics?, Atti Convegni Lincei n. 210 , 2004 ◮ Antonio Di Carlo, Actual surfaces versus virtual cuts, Atti Convegni Lincei n. 210 , 2004

Recommend


More recommend