bob pond
play

Bob Pond Acknowledge: John Hirth Classical Model (CM) Geometrical - PowerPoint PPT Presentation

Mechanistic Models of Deformation Twinning and Martensitic Transformations Bob Pond Acknowledge: John Hirth Classical Model (CM) Geometrical invariant plane Topological Model (TM) Mechanistic coherent interfaces, interfacial


  1. Mechanistic Models of Deformation Twinning and Martensitic Transformations Bob Pond Acknowledge: John Hirth

  2. Classical Model (CM) Geometrical – invariant plane Topological Model (TM) Mechanistic – coherent interfaces, interfacial line-defects

  3. CM TM 𝒄 Ʇ β„Ž Ξ³ = 𝑐/β„Ž 𝑑 Twinning dislocation: e.g. F.C. Frank, 1949 (disconnection) Bilby & Crocker, 1965 Twinning : e.g. G. Friedel, 1926 Martensitic Transformations PTMC : WLR and BM, 1953 Pond and Hirth, 2003

  4. Interfacial defect character and kinetics

  5. Admissible interfacial defects Operation characterising defect (𝑿 𝝁 , 𝒙 𝝁 )(𝑿 𝝂 , 𝒙 𝝂 ) βˆ’1 Interfacial dislocations white crystal 𝑱, 𝒄 𝝁 𝒐 Twinning disconnections (𝑿 𝝁 , 𝒙 𝝁 ) β„Ž 𝒄 = 𝒖 𝝁 βˆ’ 𝑸𝒖 𝝂 β„Ž = 𝒐 β‹… 𝒖 𝝁 (𝑿 𝝂 , 𝒙 𝝂 ) Ξ³ = 𝑐/β„Ž black crystal 𝒄 ΞΌ βˆ’π’– 𝝂 𝒖 𝝁 Pond, 1989 bicrystal

  6. Thermally activated disconnections β€’ activation energy at fixed stress ~ 𝑐 2 loop nucleation rate, ሢ 𝑂 , reasonable for small 𝑐 οƒ˜ β€’ defect mobility, ሢ 𝐻 οƒ˜ enhanced by larger core width, π‘₯ , w hich is promoted by small β„Ž οƒ˜ simple shuffles

  7. Motion of a twinning disconnection in a twin 𝒖 𝝁 [10 ΰ΄€ 10] b 𝐹 𝑗 = 0.26 𝐾𝑛 βˆ’2 h 𝒖 𝝂 [0001] 𝒄 = 0.062 π‘œπ‘› β„Ž = 2𝑒 (10ΰ΄₯ 12) = 0.376 π‘œπ‘› Ξ³ = 𝑐/β„Ž 𝛽 βˆ’ π‘ˆπ‘— π‘₯~6𝑏 𝐢𝑠𝑏𝑗𝑑𝑏𝑨 𝑓𝑒 π‘π‘š. 1966 𝑒 = 1 𝑁𝑄𝑏 𝜏 𝑄

  8. Atom Tracking: Shear and Shuffle Displacements in Twin (10ΰ΄€ 12) z 4 distinct atoms y β€œswapping” β€œrocking” Pond et al., 2013

  9. Deformation twins in Ni 2 MnGa inter-variant boundary Disconnection 𝒄 = 1 12 10 ΰ΄€ 1 = 0.072 π‘œπ‘› 𝒉 = πŸπŸπŸπŸ‘ β„Ž = 𝑒 (202) = 0.211 π‘œπ‘› 𝛿 = 𝑐 β„Ž = 0.34 Pond et al. 2012 𝒉 β‹… 𝒄 = 𝟐 Zarubova et al. 2012

  10. Twin tip in Ni 2 MnGa 𝐹 𝑗 = 0.01 𝐾𝑛 βˆ’2 4 distinct atoms no shuffling h β„Ž 𝒉 = πŸ‘πŸΰ΄₯ πŸ‘ Muntifering et al. 2014 SF HAADF STEM (Titan PNNL)

  11. Topological model for type II twinning

  12. Classical Model: irrational plane of shear 1 2 𝛽 𝛽 1 Type I Type II 1 rational 2 irrational 2 Ο† 2 1 i rrational 2 rational 1 = 2 1 = 1 1 2 Ο† 2 βˆ’π›½ 2 s 2 1 1 s 2 1 + 𝛽 𝑑 = 2π‘’π‘π‘œπ›½ 2 1 1 = 1 1 = 2

  13. TiNi ΞΌ 1ΰ΄€ 10 𝜈 000 101 πœ‡ πœ‡ 11ΰ΄€ 1 𝜈 Knowles, 1982 (a) (b)

  14. ሢ Formation mechanisms for type I and II twins Type I: glide twin Type II: glide/rotation twin 1 = 1 𝑑 1 = 2 type I source 𝑂 type II 𝑑 𝐻ሢ type II 2 Ο† 1 = 1 2 Type I: glide twin source 𝛿 = 𝑐/β„Ž π‘‚αˆΆ 2 Ο† 𝐻/ ሢ 𝐻ሢ 𝑂 favours type I competitive mechanisms: High ሢ 1 1 = 2 2 𝛽 𝐻/ ሢ 𝑂 favours type II Low ሢ

  15. Type II: formation of glide/rotation twin disconnection glide plane, k 1 1 = 2 h twin parent Ʇ b /2 b /2 b unsheared region sheared region Ʇ 1 = 2 Ʇ Ʇ 𝛽 h 1 (a) Ʇ b g (c) Ʇ parent twin (b)

  16. Type II: growth Ʇ Ʇ 1 = 2 𝛿 = 𝑑 = 2ta (𝛽) Ʇ Ʇ Ʇ 2𝛽 Ʇ Ʇ Ʇ Ʇ b g Ʇ (ii) (ii) (i) (i) Ʇ (b) parent twin Read and Shockley, 1953 1 = 2 (a)

  17. ሢ Experimental observations: e.g. 𝛽 βˆ’ 𝑉 𝑯/ ሢ πŸ‘ 𝑐 β„Ž 𝛿 No. dist. 𝑂 1 1 type nm nm atoms " {17 ΰ΄€ 111 0.098 0.456 0.216 4 low 6 }" 1/2 < 512 > II 112 0.081 0.356 0.228 4 low " 1 ΰ΄€ 1/2 < 312 > 72 " II 1ΰ΄€ 110 0.048 0.161 0.299 2 high 30 1/2 < 310 > compound 10πœˆπ‘› Type II Twinning in Other Systems NiTi CuAlNi 𝛽 βˆ’ 𝑉, π·π‘β„Žπ‘œ 1953 TiPd devitrite

  18. Topological model of martensitic transformations

  19. PTMC TM β€’ low energy terraces (coherently strained epitaxial) d martensite β€’ two defect arrays: disconnections & LID β€’ distortion field of defect network accommodates coherency strains β€’ motion of all defects produces shape deformation p ’ invariant plane parent Shape deformation P 1 = RBP 2 = ( I + dp ’)

  20. Glissile Disconnections Ti 10 wt % Mo Klenov 2002 𝒄 β„Ž πœ‡ β„Ž(𝜈 ) 𝒄 β€’ 2 distinct atoms 𝒖 𝜈 β€’ steps cause habit plane to be inclined to terrace plane 𝒖 πœ‡ β€’ 𝒄 π‘œ also produces rotational distortions β€’ motion causes one-to-one atomic exchange between phases with different densities 𝒄 π‘œ = β„Ž πœ‡ βˆ’ β„Ž(𝜈)

  21. Distortion field of a Defect Array Z’ d h Lagrangian frame y’ X’ b b s b e habit plane ΞΎ

  22. Equilibrium: superposed coherency and defect array distortion fields  D Solve the Frank-Bilby Equation for the defect array with long-range 𝒏 , which compensates 𝑬 π’‹π’Œ 𝒅 . distortion matrix, 𝑬 π’‹π’Œ

  23. Habit plane orientation Ti : Ο† = 0.53Β° Ξ² crystal: Θ - Ο† ΞΈ = 11.4 Β° homogeneous isotropic Ξ± crystal: Θ + Ο† approximation Ο† ΞΈ inhomogeneous anisotropic case rotations partitioned according to relative elastic compliances TM solutions for habit plane orientation differ slightly from PTMC, unless 𝒄 π‘œ = 0

  24. Partitioning of rotations 𝑑 πœ— 𝑧𝑧 = 12.33% Cu Ag molecular dynamic simulation of static Cu(111)/Ag(111) interface, Wang et al. 2011 οͺ Cu οͺ Ag οͺ - οͺ Ag / οͺ Cu Case Isotropic, inhomogeneous 0.449 -0.698 1.15 1.55 Anisotropic 0.504 -0.853 1.36 1.69 MD 0.483 -0.929 1.41 1.92 MD (Artificial) 0.665 -0.659 1.312 0.97

  25. Orthorhombic to Monoclinic Transformation in ZrO 2 considerable shuffling: Principal strains on terrace plane 8 Zr & 16 O distinct ions ο₯ ο€½ ο₯ ο€½ 0 3 . 8 % xx yy

  26. synchronous motion of disconnections d D habit  terrace y Chen and Chiao, 1985  D  οƒΆ  οƒΆ 0 0 b  οƒ·  οƒ· xz x    y  ο€½  ο€½ D  οƒ·  οƒ· 0 0 b 0 0 n m yz y z D  οƒ· d  οƒ· ο₯  οƒΈ  οƒΈ 0 0 b zz z

  27. Lath martensite in ferrous alloys 1: terrace plane β€œ N- W OR” Mn IF steel: Morito et al.

  28. TEM: LID slip dislocations ~{575} G-T OR dislocations, ~10 ° from screw, with 1 / 2 [ 1 1 1 ]  spacing 2.8 -6.3 nm Fe-20Ni-5Mn (Sandvik and Wayman, 1983)

  29. TEM: Disconnections in near screw orientation Moritani et al. Fe-Ni-Mn [-101] Ξ³ projection

  30. Plate Martensite ~{121} Ogawa and Kajiwara, 2004 Fe-Ni-Mn

  31. Conclusions Topological modelling provides insights into mechanisms and kinetics. Twinning:  proposed new model of type II twin formation. Martensite:  predicted interface structures consistent with observations,  predicted habits differ slightly from PTMC.

Recommend


More recommend