Mechanistic Models of Deformation Twinning and Martensitic Transformations Bob Pond Acknowledge: John Hirth
Classical Model (CM) Geometrical β invariant plane Topological Model (TM) Mechanistic β coherent interfaces, interfacial line-defects
CM TM π κ± β Ξ³ = π/β π‘ Twinning dislocation: e.g. F.C. Frank, 1949 (disconnection) Bilby & Crocker, 1965 Twinning : e.g. G. Friedel, 1926 Martensitic Transformations PTMC : WLR and BM, 1953 Pond and Hirth, 2003
Interfacial defect character and kinetics
Admissible interfacial defects Operation characterising defect (πΏ π , π π )(πΏ π , π π ) β1 Interfacial dislocations white crystal π±, π π π Twinning disconnections (πΏ π , π π ) β π = π π β πΈπ π β = π β π π (πΏ π , π π ) Ξ³ = π/β black crystal π ΞΌ βπ π π π Pond, 1989 bicrystal
Thermally activated disconnections β’ activation energy at fixed stress ~ π 2 loop nucleation rate, αΆ π , reasonable for small π ο β’ defect mobility, αΆ π» ο enhanced by larger core width, π₯ , w hich is promoted by small β ο simple shuffles
Motion of a twinning disconnection in a twin π π [10 ΰ΄€ 10] b πΉ π = 0.26 πΎπ β2 h π π [0001] π = 0.062 ππ β = 2π (10ΰ΄₯ 12) = 0.376 ππ Ξ³ = π/β π½ β ππ π₯~6π πΆπ πππ‘ππ¨ ππ’ ππ. 1966 π = 1 πππ π π
Atom Tracking: Shear and Shuffle Displacements in Twin (10ΰ΄€ 12) z 4 distinct atoms y βswappingβ βrockingβ Pond et al., 2013
Deformation twins in Ni 2 MnGa inter-variant boundary Disconnection π = 1 12 10 ΰ΄€ 1 = 0.072 ππ π = ππππ β = π (202) = 0.211 ππ πΏ = π β = 0.34 Pond et al. 2012 π β π = π Zarubova et al. 2012
Twin tip in Ni 2 MnGa πΉ π = 0.01 πΎπ β2 4 distinct atoms no shuffling h β π = ππΰ΄₯ π Muntifering et al. 2014 SF HAADF STEM (Titan PNNL)
Topological model for type II twinning
Classical Model: irrational plane of shear 1 2 π½ π½ 1 Type I Type II 1 rational 2 irrational 2 Ο 2 1 i rrational 2 rational 1 = 2 1 = 1 1 2 Ο 2 βπ½ 2 s 2 1 1 s 2 1 + π½ π‘ = 2π’πππ½ 2 1 1 = 1 1 = 2
TiNi ΞΌ 1ΰ΄€ 10 π 000 101 π π 11ΰ΄€ 1 π Knowles, 1982 (a) (b)
αΆ Formation mechanisms for type I and II twins Type I: glide twin Type II: glide/rotation twin 1 = 1 π‘ 1 = 2 type I source π type II π‘ π»αΆ type II 2 Ο 1 = 1 2 Type I: glide twin source πΏ = π/β παΆ 2 Ο π»/ αΆ π»αΆ π favours type I competitive mechanisms: High αΆ 1 1 = 2 2 π½ π»/ αΆ π favours type II Low αΆ
Type II: formation of glide/rotation twin disconnection glide plane, k 1 1 = 2 h twin parent κ± b /2 b /2 b unsheared region sheared region κ± 1 = 2 κ± κ± π½ h 1 (a) κ± b g (c) κ± parent twin (b)
Type II: growth κ± κ± 1 = 2 πΏ = π‘ = 2ta (π½) κ± κ± κ± 2π½ κ± κ± κ± κ± b g κ± (ii) (ii) (i) (i) κ± (b) parent twin Read and Shockley, 1953 1 = 2 (a)
αΆ Experimental observations: e.g. π½ β π π―/ αΆ π π β πΏ No. dist. π 1 1 type nm nm atoms " {17 ΰ΄€ 111 0.098 0.456 0.216 4 low 6 }" 1/2 < 512 > II 112 0.081 0.356 0.228 4 low " 1 ΰ΄€ 1/2 < 312 > 72 " II 1ΰ΄€ 110 0.048 0.161 0.299 2 high 30 1/2 < 310 > compound 10ππ Type II Twinning in Other Systems NiTi CuAlNi π½ β π, π·πβπ 1953 TiPd devitrite
Topological model of martensitic transformations
PTMC TM β’ low energy terraces (coherently strained epitaxial) d martensite β’ two defect arrays: disconnections & LID β’ distortion field of defect network accommodates coherency strains β’ motion of all defects produces shape deformation p β invariant plane parent Shape deformation P 1 = RBP 2 = ( I + dp β)
Glissile Disconnections Ti 10 wt % Mo Klenov 2002 π β π β(π ) π β’ 2 distinct atoms π π β’ steps cause habit plane to be inclined to terrace plane π π β’ π π also produces rotational distortions β’ motion causes one-to-one atomic exchange between phases with different densities π π = β π β β(π)
Distortion field of a Defect Array Zβ d h Lagrangian frame yβ Xβ b b s b e habit plane ΞΎ
Equilibrium: superposed coherency and defect array distortion fields οΈ D Solve the Frank-Bilby Equation for the defect array with long-range π , which compensates π¬ ππ π . distortion matrix, π¬ ππ
Habit plane orientation Ti : Ο = 0.53Β° Ξ² crystal: Ξ - Ο ΞΈ = 11.4 Β° homogeneous isotropic Ξ± crystal: Ξ + Ο approximation Ο ΞΈ inhomogeneous anisotropic case rotations partitioned according to relative elastic compliances TM solutions for habit plane orientation differ slightly from PTMC, unless π π = 0
Partitioning of rotations π π π§π§ = 12.33% Cu Ag molecular dynamic simulation of static Cu(111)/Ag(111) interface, Wang et al. 2011 οͺ Cu οͺ Ag οͺ - οͺ Ag / οͺ Cu Case Isotropic, inhomogeneous 0.449 -0.698 1.15 1.55 Anisotropic 0.504 -0.853 1.36 1.69 MD 0.483 -0.929 1.41 1.92 MD (Artificial) 0.665 -0.659 1.312 0.97
Orthorhombic to Monoclinic Transformation in ZrO 2 considerable shuffling: Principal strains on terrace plane 8 Zr & 16 O distinct ions ο₯ ο½ ο₯ ο½ 0 3 . 8 % xx yy
synchronous motion of disconnections d D habit ο€ terrace y Chen and Chiao, 1985 ο§ D ο¦ οΆ ο¦ οΆ 0 0 b ο§ ο· ο§ ο· xz x ο€ ο¨ ο© y ο ο½ ο§ ο½ D ο§ ο· ο§ ο· 0 0 b 0 0 n m yz y z D ο§ ο· d ο§ ο· ο₯ ο¨ οΈ ο¨ οΈ 0 0 b zz z
Lath martensite in ferrous alloys 1: terrace plane β N- W ORβ Mn IF steel: Morito et al.
TEM: LID slip dislocations ~{575} G-T OR dislocations, ~10 Β° from screw, with 1 / 2 [ 1 1 1 ] ο‘ spacing 2.8 -6.3 nm Fe-20Ni-5Mn (Sandvik and Wayman, 1983)
TEM: Disconnections in near screw orientation Moritani et al. Fe-Ni-Mn [-101] Ξ³ projection
Plate Martensite ~{121} Ogawa and Kajiwara, 2004 Fe-Ni-Mn
Conclusions Topological modelling provides insights into mechanisms and kinetics. Twinning: οΆ proposed new model of type II twin formation. Martensite: οΆ predicted interface structures consistent with observations, οΆ predicted habits differ slightly from PTMC.
Recommend
More recommend