“Black holes, Stokes flows and DC transport at strong coupling” Talk at the “Oxford Holography Group” Aristomenis Donos Durham University March 2015 Based on work with J. Gauntlett : 1506.01360 J. Gauntlett and E. Banks: 1507.00234 J. Gauntlett, T. Griffin and L. Melgar: 1511.00713
Outline 1 Motivation/Setup 2 Holography 3 Summary / Outlook
The Result Things a black hole horizon knows about: Temperature A Entropy s = 4 G s Shear Viscosity (sometimes) η = 4 π [Son, Starinets, Policastro] � σ � T α We will add DC conductivities T ¯ α ¯ κ
Charge transport in real materials Drude peak σ Incoherent metal Mott insulator ω eV Materials with charged d.o.f. can be Coherent metals with a well defined Drude peak Insulators Incoherent conductors of electricity Interactions expected to become important in the incoherent phase → Possible description in AdS/CFT?
The Cuprates The Cuprates are real life example of : Incoherent transport Anomalous scaling of conductivity and Hall angle with T [Blake, AD] σ B =0 DC ∝ T − 1 , θ H ∝ T − 2
Electrons as a soup Recent evidence for high viscosity in strongly interacting electrons. [1508.00836] , [1509.04165] , [1509.05691] Hydrodynamics accurate in the high T , momentum (quasi-) conserving regime [Hartnoll, Kovtun, Muller, Sachdev] Incoherent transport is away from this limit
Electrons as a soup Macroscopic effects of viscosity [1509.05691] ✯ 0 ✯ 0 ✟ ∇ i v i = 0 v j ∇ j v i + 2 η ∇ j ∇ ( j v i ) − ∇ i p = − g, ✟ + ✟✟✟ ✟✟ ∂ t v i v z = ( g/ 4 η ) ( R 2 − ρ 2 ) ⇒ σ DC ≈ R 2 /η btw This is a Stoke’s flow
Drude Model Put the lattice back! Lattice scattering (Drude physics) Average momentum obeys τ � p � ⇒ σ = nq 2 p � = qE − 1 τ � ˙ 1 − ıωτ ⇒ σ DC ≈ τ ≈ l m m Microscopically σ = G JJ ( ω ) / ( ıω )
Viscosity vs Lattice Scattering Im w Don’t need quasi-particles to have Drude physics. Coherent metals arise when mo- mentum relaxation is slow with Re w dominant pole on imaginary axis. [Hartnoll, Hofman] 1.0 0.5 0.8 0.4 0.6 0.3 Re [ σ ] Im [ σ ] 0.4 0.2 0.2 0.1 0.0 0.0 0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20 ω ω
Fourier/Ohm law We have electric currents J i and a thermal current Q i = − T it − µ J i Transport coefficients are packaged in Ohm/Fourier law � J � � � � � σ αT E = Q αT ¯ κT ¯ − ( ∇ T ) /T With ∇ T a temperature gradient
Setup In D = 4 Einstein-Maxwell with AdS asymptotics: L EM = R − 1 4 F µν F µν + 12 4 = − U ( r ) dt 2 + U ( r ) − 1 dr 2 + r 2 � ds 2 dx 2 1 + dx 2 � 2 A = a ( r ) dt Background black hole has temperature T , energy E , pressure P , entropy s and charge q .
Setup Introduce periodic lattice (deformation) on the boundary Focus on simple black hole topologies More general statements [AD, Gauntlett, Griffin, Melgar]
Setup Deform by chemical potential µ 0 and magnetic field B Hold at finite temperature T Introduce periodic sources that can relax momentum: Local chemical potential ∇ µ Local temperature ∇ T Magnetic impurities Local stress + rotation Probe with external electric field ∇ δµ = E and thermal gradient −∇ δT/T = ζ to extract conductivities
RG/Holographic picture , HSV, ... ? I Charge dominated RG flows, translations restored in IR → Coherent transport II Lattice dominated RG flows, translations broken in IR → Incoherent transport [AD, Hartnoll] [AD, Gauntlett]
Conductivity from Q-lattices [AD, Gauntlett] 3.0 T � Μ� 0.100 60 T � Μ� 0.100 T � Μ� 0.0502 50 2.5 T � Μ� 0.0503 T � Μ� 0.00625 40 T � Μ� 0.0154 T � Μ� 0.00118 Re � Σ � Re � Σ � 2.0 T � Μ� 0.00671 30 1.5 20 10 1.0 0 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25 0.30 Ω � Μ Ω � Μ 0.70 0.100 0.65 0.050 0.60 0.55 0.020 Ρ Ρ 0.50 0.010 0.45 0.40 0.005 0.35 0.001 0.002 0.005 0.010 0.020 0.050 0.100 0.00 0.02 0.04 0.06 0.08 0.10 T � Μ T � Μ Can model Metal - Insulator transitions Similar story for inhomogeneous lattices [Rangamani, Rozali, Smyth]
Currents At Equilibrium For homogeneous systems we have T 0 , µ 0 , � B 0 , ... First consider hydrodynamic limit Weakly break translations µ 0 → µ 0 + δµ ( x ) , B 0 → � � B 0 + δ � B ( x ) , T → T + δµ ( x ) In hydrodynamic limit, magnetization becomes local δ � M = ∂ µ � M 0 δµ ( x ) + ∂ T � M 0 δT ( x ) + · · · ⇒ Presence of local magnetization currents J = � � ∇ × δ � M Similar for heat currents
Currents At Equilibrium
Currents At Equilibrium In the non-hydrodynamic limit k = ∂ t is a symmetry L k ∗ J = 0 ⇒ i k ( d ∗ J ) + d ( i k ∗ J ) = 0 d ( i k ∗ J ) = 0 Assuming R t × M D − 1 topology i k ∗ J = d ∗ D M + ω with ω harmonic. Currents relax � i k ∗ J = 0 ⇒ ω = 0 ⇒ J i = ∂ j ( √ g D − 1 M ij ) C D − 2 Similarly for the heat current Q i = T iµ k µ − k µ A µ J i = ∂ j ( √ g D − 1 M ij T )
DC conductivities from BH horizons Bulk theory is Einstein-Maxwell Consider E/M charged, static black branes ds 2 = − UG ( dt + χ ) 2 + F U dr 2 + ds 2 (Σ d ) A = a t ( dt + χ ) + a i dx i ds 2 (Σ d ) = g ij ( r, x ) dx i dx j Asymptotically, r → ∞ U → r 2 , F → 1 a t ( r, x ) → µ ( x ) , a i ( r, x ) → a i ( x ) G → ¯ g ij ( r, x ) → r 2 ¯ G ( x ) , g ij ( x ) , χ i ( r, x ) → ¯ χ i ( x ) Local µ , B , T , mag impurities, surface forces
DC conductivities from BH horizons For the perturbation write δ ( ds 2 ) = δg µν ( r, x ) dx µ dx ν − 2 tGUζ i dtdx i , δA = δa µ ( r, x ) dx µ − tE i dx i + ta t ζ i dx i E ( x i ) and ζ ( x i ) are closed forms ζ is boundary temperature gradient E is boundary electric field Count functions: g µν → 1 2 ( d + 2) ( d + 3) − ( d + 2) functions A µ → ( d + 2) − 1 functions
Radial Hamiltonian Imagine radial foliation by hypersurfaces e.g. normal to ∂ r Radial evolution Hamiltonian is sum of constraints � N H + N µ H µ + D G + b . t . H ∂ r = At infinity they yield Ward identities ∇ µ � T µν � = F µν � J ν � , ∇ µ � J µ � = 0 , � T µµ � = anom Meaningful but not closed system without hydro
DC conductivities from BH horizons Projection of metric h µν and gauge field b µ on r = ε surface Conjugate momentum densities π µν and π µ with respect to ∂ r “Evolution” equations h µν = δH ∂ r π µν = − δH ∂ r ˙ δπ µν , ˙ δh µν b µ = δH ∂ r π µ = − δH ∂ r ˙ δπ µ , ˙ δb µ
DC conductivities from BH horizons And constraints H ν = D µ t µν − 1 2 f νρ j ρ = 0 G = D µ j µ = 0 With t µν = ( − h ) − 1 / 2 π µν and j µ = ( − h ) − 1 / 2 π µ . Continuity equations on the surface
DC conductivities from BH horizons Examine constraints close to the horizon Impose infalling conditions Define v i ≡ − δg (0) w ≡ δa (0) it , , t p ≡ − 4 πT δg (0) G (0) − δg (0) it g ij rt (0) ∇ j ln G (0)
DC conductivities from BH horizons Constraints on the horizon give H t ⇒ ∇ i v i = 0 ∇ 2 w + ∇ i ( F (0) ik v k ) + v i ∇ i a (0) = −∇ i E i G ⇒ t H j ⇒ 2 ∇ i ∇ ( i v j ) + a (0) t ∇ j w − ∇ j p ji v i + F (0) t v i + F i (0) k v k ) + 4 πT dχ (0) ji ( ∇ i w + a (0) = − 4 πT ζ j − a (0) t E j − F (0) ji E i Solve for a Stokes flow on the curved black hole horizon Closed system of equations in d dimensions Nowhere made hydro assumptions! Related (?) work [Damour][Thorne, Price][Eling, Oz][Bredberg, Keeler, Lysov, Strominger]
DC conductivities from BH horizons Electric Current Define J i = √− gF ir At r → ∞ gives field theory current densities J i ∞ Anywhere in the bulk � √− gF ji � + √− g F ij ζ j ∂ r J i = ∂ j ∂ i J i = J i ζ i
DC conductivities from BH horizons Heat Current Let k = ∂ t and define G µν = − 2 ∇ [ µ k ν ] − k [ µ F ν ] σ A σ − 1 2 ( φ − θ ) F µν and Q i = √− gG ir At r → ∞ gives field theory heat current densities Q i δT it δJ i � � � � ∞ = − − µ Anywhere in the bulk � √− gG ji � + 2 √− gG ij ζ j + √− gZF ij E j ∂ r Q i = ∂ j ∂ i Q i = 2 Q i ζ j + J i E i
DC Conductivities from BH horizons For the background ( E i = ζ i = 0 ) we have = ∂ j M ( B ) ij J ( B ) i = ∂ j M ( B ) ij , Q ( B ) i T ∞ ∞ with the magnetizations � ∞ � ∞ dr √− g F ij , dr √− g G ij M ij M ij ( x ) = − T ( x ) = − r + r + satisfying ∂ i J ( B ) i ∂ i Q ( B ) i = 0 , = 0 ∞ ∞ and giving and no fluxes!
DC Conductivities from BH horizons Back to perturbations we write... (0) + ∂ j M ij − M ( B ) ij ζ j J i ∞ = J i (0) + ∂ j M ij T − M ( B ) ij E j − 2 M ( B ) ij Q i ∞ = Q i ζ j T The “transport components” of the currents are then [Cooper, Halperin, Ruzin] J i ∞ = J i Q i ∞ = Q i (0) , (0) Important point is ∂ i J i ∂ i Q i ∞ = 0 , ∞ = 0 ⇒ Meaningful to examine fluxes through d − 1 cycles!
Recommend
More recommend