binary evolution and supernova kicks
play

Binary evolution and supernova kicks Mathieu Renzo The most common - PowerPoint PPT Presentation

Binary evolution and supernova kicks Mathieu Renzo The most common binary evolution path 2 see outreach movie at https://www.youtube.com/watch?v=qmfJNI0PXbo The most common binary evolution path 2 see outreach movie at


  1. Binary evolution and supernova kicks Mathieu Renzo

  2. The most common binary evolution path 2 see outreach movie at https://www.youtube.com/watch?v=qmfJNI0PXbo

  3. The most common binary evolution path 2 see outreach movie at https://www.youtube.com/watch?v=qmfJNI0PXbo

  4. The most common binary evolution path 2 see outreach movie at https://www.youtube.com/watch?v=qmfJNI0PXbo

  5. The most common binary evolution path 2 see outreach movie at https://www.youtube.com/watch?v=qmfJNI0PXbo

  6. How common is “common”? 3 Renzo et al. 19b

  7. What exactly disrupts the binary? 86 + 11 − 22 % of massive binaries are disrupted Ejecta impact (Tauris & Takens 98, Liu et al. 15) Loss of SN ejecta (Blaauw ’61) Renzo et al. 19b, Kochanek et al. 19, 4 Eldridge et al. 11, De Donder et al. 97

  8. What exactly disrupts the binary? 86 + 11 − 22 % of massive binaries are disrupted Ejecta impact (Tauris & Takens 98, Liu et al. 15) SN Natal kick (Shklovskii 70, Katz 75, Janka 13, 17) Loss of SN ejecta (Blaauw ’61) Renzo et al. 19b, Kochanek et al. 19, 4 Eldridge et al. 11, De Donder et al. 97

  9. Kicks do not change companion velocity 86 + 11 − 22 % of massive binaries are disrupted v dis ≃ v orb 2 before the SN SN Natal kick (Shklovskii 70, Katz 75, Janka 13, 17) Renzo et al. 19b, Kochanek et al. 19, 5 Eldridge et al. 11, De Donder et al. 97

  10. BH kicks from the mass of runaways

  11. A way to constrain BH kicks with Gaia Massive runaways mass function ( v ≥ 30 km s − 1 , M ≥ 7 . 5 M ⊙ ) 1.0 Probability × 10 5 0.0 # stars 1.0 0.0 1.0 0.0 0 10 20 30 40 50 60 70 M dis [ M ⊙ ] Mass 6 Numerical results publicly available at:: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  12. A way to constrain BH kicks with Gaia Massive runaways mass function ( v ≥ 30 km s − 1 , M ≥ 7 . 5 M ⊙ ) 1.0 Probability × 10 5 0.0 # stars 1.0 0.0 BH momentum kick ( σ kick = 265 km s − 1 , fiducial) 1.0 0.0 0 10 20 30 40 50 60 70 M dis [ M ⊙ ] Mass 6 Numerical results publicly available at:: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  13. A way to constrain BH kicks with Gaia Massive runaways mass function ( v ≥ 30 km s − 1 , M ≥ 7 . 5 M ⊙ ) 1.0 Probability × 10 5 0.0 BH: σ kick = 100 km s − 1 NS: σ kick = 265 km s − 1 # stars 1.0 (no fallback for BH) 0.0 BH momentum kick ( σ kick = 265 km s − 1 , fiducial) 1.0 0.0 0 10 20 30 40 50 60 70 M dis [ M ⊙ ] Mass 6 Numerical results publicly available at:: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  14. A way to constrain BH kicks with Gaia Massive runaways mass function ( v ≥ 30 km s − 1 , M ≥ 7 . 5 M ⊙ ) BH kick=NS kick ( σ kick = 265 km s − 1 ) 1.0 (no fallback) Probability × 10 5 0.0 BH: σ kick = 100 km s − 1 NS: σ kick = 265 km s − 1 # stars 1.0 (no fallback for BH) 0.0 BH momentum kick ( σ kick = 265 km s − 1 , fiducial) 1.0 0.0 0 10 20 30 40 50 60 70 M dis [ M ⊙ ] Mass 6 Numerical results publicly available at:: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  15. Mass-velocity varying the natal kick Renzo et al. 19b, (see also Dray et al. 2006 for WR runaways) Fiducial Intermediate BH kick Large BH kicks σ kick = 265 km s − 1 σ kick = 100 km s − 1 (no fallback) 100 100 100 − 6 − 6 − 6 BH: σ kick = 100 km s − 1 90 BH momentum kick 90 90 BH kick=NS kick ( σ kick = 265 km s − 1 , fiducial) NS: σ kick = 265 km s − 1 ( σ kick = 265 km s − 1 , no fallback) 80 80 (no fallback for BH) 80 − 7 − 7 − 7 70 70 70 M dis [ M ⊙ ] log 10 ( P dis ) M dis [ M ⊙ ] log 10 ( P dis ) M dis [ M ⊙ ] log 10 ( P dis ) 60 60 60 − 8 − 8 − 8 50 50 50 40 40 40 − 9 − 9 − 9 30 30 30 20 20 20 − 10 − 10 − 10 10 10 10 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 v dis [ km s − 1 ] v dis [ km s − 1 ] v dis [ km s − 1 ] 7 Numerical results publicly available at: http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  16. Kicks constraints from XRBs astrometry

  17. Post-SN velocity of surviving binaries NS + Main sequence BH + Main sequence BH kick = NS kick # systems Velocity respect to the pre-explosion binary center of mass 8 Numerical results publicly available at: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  18. Preliminary: The case of 4U1700-37 M ≃ 2 . 5 M ⊙ , M ∗ ≃ 60 ± 10 M ⊙ , P ≃ 3 . 4 days , e ≃ 0 . 22 , v ≃ 60 km s − 1 3 Galactic longitude 2 b (degrees) 1 current positions members NGC 6231 current position 4U 1700-37 0 348.00 347.25 346.50 345.75 345.00 344.25 343.50 342.75 l (degrees) Galactic latitude 9 van der Meij, D.-F . Guo, et al. (incl. MR), in prep.

  19. Preliminary: The case of 4U1700-37 M ≃ 2 . 5 M ⊙ , M ∗ ≃ 60 ± 10 M ⊙ , P ≃ 3 . 4 days , e ≃ 0 . 22 , v ≃ 60 km s − 1 3 Galactic longitude 2 b (degrees) 1 path NGC 6231 position members NGC 6231 2.2 Myr ago current positions members NGC 6231 current position 4U 1700-37 0 348.00 347.25 346.50 345.75 345.00 344.25 343.50 342.75 l (degrees) Galactic latitude 9 van der Meij, D.-F . Guo, et al. (incl. MR), in prep.

  20. Preliminary: The case of 4U1700-37 M ≃ 2 . 5 M ⊙ , M ∗ ≃ 60 ± 10 M ⊙ , P ≃ 3 . 4 days , e ≃ 0 . 22 , v ≃ 60 km s − 1 Galactic longitude Galactic latitude 9 van der Meij, D.-F . Guo, et al. (incl. MR), in prep.

  21. Conclusions

  22. Take home points Natal kicks cause the disruption of 86 + 11 − 22 % of massive binaries For disrupted binaries the kick acts only on compact object ⇒ walkaways outnumber the runaways; If binary remains bound the kick changes the kinematics of the whole system; Runaway mass distribution ⇒ constraints on BH kicks without seeing the 10 collapse nor the BH.

  23. Backup slides

  24. Methods: Population Synthesis Fast ⇒ Allows statistical tests of the inputs & assumptions Stellar SN kicks Winds Evolution Synthetic Initial Population Distributions (available online) RLOF & Common Mass Envelope Tidal Transfer Interactions

  25. Initial Distributions Kroupa ’01 (or Schneider et al. , ’18) flat Sana et al. , ’12 Probability slope=-2.3 (or -1.9) slope=-0.55 if M 1 ≥ 15 M ⊙ else flat 0 25 50 75 100 0.0 0.5 1.0 0 1 2 3 4 q = M 2 / M 1 log 10 ( P / [ days ]) M 1 [ M ⊙ ] Maxwellian σ v kick = 265 km s − 1 + Fallback rescaling (from Fryer et al. ’12) Probability 0 200 400 600 800 1000 NS kick [km s − 1 ] Hobbs et al. ’05

  26. Velocity distribution: Runaways Velocity respect to the pre-explosion binary center of mass Numerical results publicly available at: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  27. Velocity distribution: Walkaways Velocity respect to the pre-explosion binary center of mass Numerical results publicly available at: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  28. Velocity distribution: Walkaways Under-production of runaways because mass transfer widens the binaries and makes the secondary more massive Velocity respect to the pre-explosion binary center of mass Numerical results publicly available at: Renzo et al. 19b http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/624/A66

  29. Star forming region velocity dispersion 0.12 0.05 R 15 = 26.8 0.04 0.10 R SFH = 14.1 0.03 15 0.02 Normalized Probability 0.01 0.08 0.00 − 40 − 20 0 20 40 v SFH [ km s − 1 ] 0.06 0.04 0.02 ≥ 15 M ⊙ Convolved 0.00 0 10 20 30 40 50 60 70 v dis [ km s − 1 ] Renzo et al. 19b

  30. Velocity distribution log-scale Cumulative 10 0 ⇐ Walkaways Runaways ⇒ 10 − 1 0.002 0.3 Probability × 10 3 0.001 0.2 0.000 2.00 2.25 0.1 0.0 0.0 0.5 1.0 1.5 2.0 2.5 log 10 ( v dis / [ km s − 1 ]) Renzo et al. 19b

  31. Velocity post-main sequence stars 1.0 Cumulative 0.8 0.6 0.4 0.2 0.0 He stars 6 WDs 5 non-degenerate post-MS Probability × 10 5 4 3 2 1 0 0 20 40 60 80 100 120 v dis [ km s − 1 ] Renzo et al. 19b

  32. pre-CC mass distribution 1.0 Cumulative 0.8 0.6 0.4 0.2 0.0 M CC 8.0 M dis 7.0 Probability × 10 4 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0 10 20 30 40 50 M pre − CC [ M ⊙ ] Renzo et al. 19b

  33. pre-CC separation distribution 1.0 Cumulative 0.8 0.6 0.4 0.2 0.0 M pre − CC ≥ 7.5 M ⊙ 2 2.0 Probability × 10 4 all M pre − CC 2 1.0 M pre − CC ≥ 15 M ⊙ 2 0.0 1 2 3 4 5 log 10 ( a pre − CC / R ⊙ ) Renzo et al. 19b

  34. How far do they get? “Distance traveled” (No potential well) Renzo et al. 19b

Recommend


More recommend