beyond np the work and beyond np the work and legacy of
play

Beyond NP: The Work and Beyond NP: The Work and Legacy of Larry - PowerPoint PPT Presentation

Beyond NP: The Work and Beyond NP: The Work and Legacy of Larry Stockmeyer Legacy of Larry Stockmeyer Lance Fortnow Lance Fortnow University of Chicago University of Chicago Larry Joseph Stockmeyer Larry Joseph Stockmeyer 1948


  1. MINIMAL in NP with Equivalence Oracle MINIMAL in NP with Equivalence Oracle (x ∨ y) ∧ (x ∨ y) ∧ z Equivalence Guess: x ∧ z (x ∧ z , (x ∨ y) ∧ (x ∨ y) ∧ z) EQUIVALENT

  2. MINIMAL MINIMAL � MINIMAL is in NP with an � MINIMAL is in NP with an “ “oracle oracle” ” for for equivalence or non- -equivalence. equivalence. equivalence or non

  3. MINIMAL MINIMAL � MINIMAL is in NP with an � MINIMAL is in NP with an “ “oracle oracle” ” for for equivalence or non- -equivalence. equivalence. equivalence or non � Since non � Since non- -equivalence is in NP we can equivalence is in NP we can solve MINIMAL in NP with NP oracle. solve MINIMAL in NP with NP oracle.

  4. MINIMAL MINIMAL � MINIMAL is in NP with an � MINIMAL is in NP with an “ “oracle oracle” ” for for equivalence or non- -equivalence. equivalence. equivalence or non � Since non � Since non- -equivalence is in NP we can equivalence is in NP we can solve MINIMAL in NP with NP oracle. solve MINIMAL in NP with NP oracle. � Suggests a � Suggests a “ “hierarchy hierarchy” ” above NP. above NP.

  5. Meyer- -Stockmeyer 1972 Stockmeyer 1972 Meyer The Polynomial Time Hierarchy NP NP MINIMAL NP P

  6. Meyer- -Stockmeyer 1972 Stockmeyer 1972 Meyer The Polynomial Time Hierarchy NP NP NP= Σ 1 p P

  7. Meyer- -Stockmeyer 1972 Stockmeyer 1972 Meyer The Polynomial Time Hierarchy NP Σ 3p = Σ 4 p NP Σ 2p = Σ 3 p NP NP = Σ 2 p NP= Σ 1 p P

  8. Meyer- -Stockmeyer 1972 Stockmeyer 1972 Meyer The Polynomial Time Hierarchy Σ 4 co-NP Σ 3p = Π 4 p p Σ 3 co-NP Σ 2p = Π 3 p p Σ 2 p co-NP NP = Π 2 p MINIMAL Σ 1 p =NP co-NP= Π 1 p P

  9. Meyer- -Stockmeyer 1972 Stockmeyer 1972 Meyer The Polynomial Time Hierarchy PH Σ 4 p Π 4 p P Σ 3p = ∆ 4 p Σ 3 p Π 3 p P Σ 2p = ∆ 3 p Σ 2 p Π 2 p P NP = ∆ 2 p Σ 1 p =NP co-NP= Π 1 p P= ∆ 1 p

  10. Properties of the Hierarchy Properties of the Hierarchy � Meyer � Meyer- -Stockmeyer, Stockmeyer, “ “The Equivalence The Equivalence Problem for Regular Expressions with Problem for Regular Expressions with Squaring Requires Exponential Space” ”, , Squaring Requires Exponential Space SWAT 1972 SWAT 1972 � Stockmeyer, � Stockmeyer, “ “The Polynomial The Polynomial- -Time Time Hierarchy” ” , TCS, 1977. Hierarchy , TCS, 1977. � Wrathall � Wrathall, , “ “Complete Sets and the Complete Sets and the Polynomial- -Time Hierarchy Time Hierarchy” ”, TCS, 1977. , TCS, 1977. Polynomial

  11. Properties of the Hierarchy Properties of the Hierarchy PSPACE PH Σ 4 p Π 4 p ∆ 4 p Σ 3 p Π 3 p ∆ 3 p Σ 2 p Π 2 p ∆ 2 p Σ 1 p =NP Co-NP= Π 1 p P= ∆ 1 p

  12. Properties of the Hierarchy Properties of the Hierarchy PSPACE PH Σ 4 p Π 4 p ∆ 4 p Σ 3 p Π 3 p ∆ 3 p Σ 2 p Π 2 p ∆ 2 p Σ 1 p =NP Co-NP= Π 1 p P= ∆ 1 p

  13. Properties of the Hierarchy Properties of the Hierarchy PSPACE PH Σ 4 p Π 4 p ∆ 4 p Π 3 p Σ 3 p = ∆ 3 p Σ 2 p Π 2 p ∆ 2 p Σ 1 p =NP Co-NP= Π 1 p P= ∆ 1 p

  14. Properties of the Hierarchy Properties of the Hierarchy PSPACE PH Σ 4 p Π 4 p ∆ 4 p Π 3 p Σ 3 p = ∆ 3 p Σ 2 p Π 2 p ∆ 2 p Σ 1 p =NP Co-NP= Π 1 p P= ∆ 1 p

  15. Properties of the Hierarchy Properties of the Hierarchy PSPACE PH= Σ 3 p = ∆ 3 p = Π 3 p Σ 2 p Π 2 p ∆ 2 p Σ 1 p =NP Co-NP= Π 1 p P= ∆ 1 p

  16. Properties of the Hierarchy Properties of the Hierarchy If P = NP PSPACE P=NP=PH

  17. Properties of the Hierarchy Properties of the Hierarchy PSPACE PH Σ 4 p Π 4 p ∆ 4 p Σ 3 p Π 3 p ∆ 3 p Σ 2 p Π 2 p ∆ 2 p Σ 1 p =NP Co-NP= Π 1 p P= ∆ 1 p

  18. Properties of the Hierarchy Properties of the Hierarchy PSPACE PH Σ 4 p Π 4 p ∆ 4 p Σ 3 p Π 3 p ∆ 3 p Σ 2 p Π 2 p ∆ 2 p Σ 1 p =NP Co-NP= Π 1 p P= ∆ 1 p

  19. Properties of the Hierarchy Properties of the Hierarchy PH=PSPACE Σ 4 p Π 4 p ∆ 4 p Σ 3 p Π 3 p ∆ 3 p Σ 2 p Π 2 p ∆ 2 p Σ 1 p =NP Co-NP= Π 1 p P= ∆ 1 p

  20. Properties of the Hierarchy Properties of the Hierarchy PH=PSPACE Σ 4 p Π 4 p ∆ 4 p Σ 3 p Π 3 p ∆ 3 p Σ 2 p Π 2 p ∆ 2 p Σ 1 p =NP Co-NP= Π 1 p P= ∆ 1 p

  21. Properties of the Hierarchy Properties of the Hierarchy PSPACE=PH= Σ 3 p = ∆ 3 p = Π 3 p Σ 2 p Π 2 p ∆ 2 p Σ 1 p =NP Co-NP= Π 1 p P= ∆ 1 p

  22. Quantifier Characterization Quantifier Characterization Σ 3 Σ * A language L is in Σ if for all x in Σ P if for all x in P * A language L is in 3 ⇔ ∃ ∃ u ∀ v ∃ w x is in L ⇔ u ∀ v ∃ w P(x,u,v,w P(x,u,v,w) ) x is in L Π 3 Σ * A language L is in Π if for all x in Σ P if for all x in P * A language L is in 3 ⇔ ∀ ∀ u ∃ v ∀ w x is in L ⇔ u ∃ v ∀ w P(x,u,v,w P(x,u,v,w) ) x is in L

  23. Complete Sets Complete Sets � We define B � We define B 3 by the set of true quantified 3 by the set of true quantified formula of the form formula of the form ∃ x ∃ x ∃ x ∀ y ∀ y ∃ z ∃ z ∃ 1 ∃ … ∃ n ∀ … ∀ n ∃ … ∃ … … … x 1 x 2 x n y 1 y n z 1 z n 2 1 1 n ϕ (x … ,x … ,y … ,z ϕ , … , … , … (x 1 ,x n ,y 1 ,y n ,z 1 ,z n ) 1 , n ,y 1 , n ,z 1 , n )

  24. Complete Sets in the Hierarchy Complete Sets in the Hierarchy PSPACE PH Σ 4 p B 4 Π 4 B 4 p ∆ 4 p Σ 3 p B 3 Π 3 B 3 p ∆ 3 p Σ 2 p B 2 Π 2 B 2 p ∆ 2 p Σ 1 p =NP Co-NP= Π 1 B 1 =SAT B 1 p P= ∆ 1 p

  25. Natural Complete Sets Natural Complete Sets � N � N- -INEQ INEQ – – Inequivalence of Integer Inequivalence of Integer Expressions with union and addition. Expressions with union and addition. ∪ 20 ∪ 15)) ∪ ((2 ∪ 5)+(7 ∪ 9)) (50+(40 ∪ 20 ∪ 15)) ∪ ((2 ∪ 5)+(7 ∪ 9)) (50+(40 � Meyer � Meyer- -Stockmeyer 1973 Stockmeyer 1977 Stockmeyer 1973 Stockmeyer 1977 Σ 2 INEQ is Σ 2p p - – N N- -INEQ is -complete complete – � Umans 1999 � Umans 1999 Σ 2 Succinct Set Cover is Σ 2p p - – Succinct Set Cover is -complete complete – � Schafer 1999 � Schafer 1999 Σ 3 Succinct VC Dimension is Σ p - – Succinct VC Dimension is 3p -complete complete –

  26. ω - The ω -jump of the Hierarchy jump of the Hierarchy The � Meyer � Meyer- -Stockmeyer 1973, Stockmeyer 1977 Stockmeyer 1973, Stockmeyer 1977 ∪ B = ∪ B ω B k B ω = k � Quantified Boolean Formula with an � Quantified Boolean Formula with an unbounded number of alterations. unbounded number of alterations. � Now called QBF or TQBF. � Now called QBF or TQBF.

  27. ω - Complexity of ω -jump jump Complexity of B ω (TQBF) PSPACE PH Σ 4 p B 4 Π 4 B 4 p ∆ 4 p Σ 3 p B 3 Π 3 B 3 p ∆ 3 p Σ 2 p B 2 Π 2 B 2 p ∆ 2 p Σ 1 p =NP Co-NP= Π 1 B 1 =SAT B 1 p P= ∆ 1 p

  28. Alternation Alternation � Chandra � Chandra- -Kozen Kozen- -Stockmeyer JACM 1981 Stockmeyer JACM 1981 � Chandra � Chandra- -Stockmeyer STOC 1976 Stockmeyer STOC 1976 � Kozen � Kozen FOCS 1976 FOCS 1976

  29. Alternation Alternation ∃ ∃ ∃ ∃ ∃ ∃ ∃ ∃ ∃ ∃ ∃ ∃ ∃ ∃ ∃ Rej Rej Rej Rej Rej Rej Rej Rej Rej Acc Rej Rej Rej Rej Acc Acc

  30. Alternation Alternation ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀

  31. Alternation Alternation ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ Acc Acc Acc Acc Acc Acc Acc AccAccAcc Acc Acc Acc Acc Acc Acc

  32. Alternation Alternation ∃ ∃ ∃ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ Rej Rej Rej Rej Rej Rej Rej Rej Rej Acc Rej Rej Rej Acc Acc Acc Acc

  33. Alternation Theorems Alternation Theorems � Chandra � Chandra- -Kozen Kozen- -Stockmeyer Stockmeyer ⊆ DSPACE(t(n )) ⊆ � ATIME(t(n � ATIME(t(n)) DSPACE(t(n)) )) ⊆ ATIME(s )) ⊆ � NSPACE(s(n � 2 (n)) NSPACE(s(n)) ATIME(s 2 (n)) ∪ DTIME(c )) = ∪ � ASPACE(s(n � s(n) ) ) ASPACE(s(n)) = DTIME(c s(n ) L ⊆ P ⊆ PSPACE ⊆ EXP ⊆ EXPSPACE ⊆ … = = = = ⊆ ⊆ ⊆ ⊆ … AL AP APSPACE AEXP

  34. Σ 2 Alternate Characterization of Σ p 2p Alternate Characterization of ∃ ∃ ∃ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ Rej Rej Rej Rej Rej Rej Rej Rej Rej Acc Rej Rej Acc Acc Acc Acc

  35. Other Alternating Models Other Alternating Models Chandra-Kozen-Stockmeyer 1981 � Log � Log- -Space Hierarchy Space Hierarchy – Collapses to NL (Immerman Collapses to NL (Immerman- -Szelepcs Szelepcsé ényi nyi ’ ’88) 88) – � Alternating Finite State Automaton � Alternating Finite State Automaton – Same power as DFA but doubly exponential Same power as DFA but doubly exponential – blowup in states. blowup in states. � Alternating Push � Alternating Push- -Down Automaton Down Automaton Accepts exactly E=DTIME(2 O(n) O(n) ) – Accepts exactly E=DTIME(2 ) – – Strictly stronger than Strictly stronger than PDAs PDAs – – Inclusion due to Inclusion due to Ladner Ladner- -Lipton Lipton- -Stockmeyer Stockmeyer ’ ’78 78 –

  36. Alternation as a Game Alternation as a Game ∃ ∃ ∃ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ Rej Rej Rej Rej Rej Rej Rej Rej Rej Acc Rej Rej Acc Acc Acc Acc

  37. Alternation as a Game Alternation as a Game ∃ ∃ ∃ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ Rej Rej Rej Rej Rej Rej Rej Rej Rej Acc Rej Rej Acc Acc Acc Acc

  38. Alternation as a Game Alternation as a Game ∃ ∃ ∃ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ Rej Rej Rej Rej Rej Rej Rej Rej Rej Acc Rej Rej Acc Acc Acc Acc

  39. Alternation as a Game Alternation as a Game ∃ ∃ ∃ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ Rej Rej Rej Rej Rej Rej Rej Rej Rej Acc Rej Rej Acc Acc Acc Acc

  40. Alternation as a Game Alternation as a Game ∃ ∃ ∃ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀ Rej Rej Rej Rej Rej Rej Rej Rej Rej Acc Rej Rej Acc Acc Acc Acc

  41. Complete Sets Via Games Complete Sets Via Games � Stockmeyer � Stockmeyer- -Chandra 1979 Chandra 1979 � Can use problems based on games to get � Can use problems based on games to get completeness results for PSPACE and EXP. completeness results for PSPACE and EXP. � Create a combinatorial game that is EXP � Create a combinatorial game that is EXP- - complete and thus not decidable in P. complete and thus not decidable in P. � First complete sets for PSPACE and EXP � First complete sets for PSPACE and EXP not based on machines or logic. not based on machines or logic.

  42. Checkers Checkers

  43. Generalized Checkers Generalized Checkers

  44. Generalized Checkers Generalized Checkers � PSPACE � PSPACE- -hard hard – Fraenkel Fraenkel et al. 1978 et al. 1978 – � EXP � EXP- -complete complete – Robson 1984 Robson 1984 –

  45. Approximate Couting Couting Approximate � #P � #P – – Valiant 1979 Valiant 1979 – Functions that count solutions of NP problems. Functions that count solutions of NP problems. – – Permanent is #P Permanent is #P- -complete complete – � Stockmeyer 1985 building on Sipser 1983 � Stockmeyer 1985 building on Sipser 1983 – Can approximate any #P function f in Can approximate any #P function f in polytime polytime – Σ 2 with an oracle for Σ p . 2p . with an oracle for � Toda 1991 � Toda 1991 – Every language in PH reducible to #P Every language in PH reducible to #P –

  46. Complexity of #P Complexity of #P PSPACE P #P Perm PH Σ 4 p Π 4 p ∆ 4 p Σ 3 p Π 3 p ∆ 3 Approx-#P p Σ 2 p Π 2 p ∆ 2 p Σ 1 p =NP Co-NP= Π 1 p P= ∆ 1 p

  47. Legacy of Larry Stockmeyer Legacy of Larry Stockmeyer � Circuit Complexity � Circuit Complexity � Infinite Hierarchy Conjecture � Infinite Hierarchy Conjecture � Probabilistic Computation � Probabilistic Computation � Interactive Proof Systems � Interactive Proof Systems

  48. Circuit Complexity Circuit Complexity � Baker � Baker- -Gill Gill- -Solovay Solovay ’ ’75: 75: Relativization Relativization Paper Paper – Open: Is PH infinite relative to an oracle? Open: Is PH infinite relative to an oracle? – � Sipser � Sipser ’ ’83: Strong lower bounds on depth d 83: Strong lower bounds on depth d circuits simulating depth d+1 circuits. circuits simulating depth d+1 circuits. � Yao � Yao ’ ’85: 85: “ “Separating the Polynomial Separating the Polynomial- -Time Time Hierarchy by Oracles” ” Hierarchy by Oracles � Led to future circuit results by H � Led to future circuit results by Hå åstad, stad, Razborov, Smolensky Smolensky and many others. and many others. Razborov,

  49. Infinite Hierarchy Conjecture Infinite Hierarchy Conjecture � Is the Polynomial � Is the Polynomial- -Time Hierarchy Infinite? Time Hierarchy Infinite? � Best Evidence: � Best Evidence: Yao Yao’ ’s s result shows result shows alternating log- -time hierarchy infinite. time hierarchy infinite. alternating log � Many complexity results � Many complexity results – If PROP then the polynomial If PROP then the polynomial- -time hierarchy time hierarchy – collapses. collapses. – If PH is infinite then NOT PROP. If PH is infinite then NOT PROP. – � Gives evidence for NOT PROP. � Gives evidence for NOT PROP.

  50. … If Hierarchy is Infinite … If Hierarchy is Infinite � SAT does not have small circuits. � SAT does not have small circuits. – Karp Karp- -Lipton 1980 Lipton 1980 – � Graph isomorphism is not NP � Graph isomorphism is not NP- -complete. complete. – Goldreich Goldreich- -Micali Micali- -Wigderson Wigderson 1991 1991 – – Goldwasser Goldwasser- -Sipser 1989 Sipser 1989 – – Boppana Boppana- -H Hå åstad stad- -Zachos 1987 Zachos 1987 – � Boolean hierarchy is infinite. � Boolean hierarchy is infinite. – Kadin Kadin 1988 1988 –

  51. Boolean Hierarchy Boolean Hierarchy � BH � BH 1 = NP 1 = NP � BH � BH k+1 = { B- -C | B in NP and C in C | B in NP and C in BH BH k } k+1 = { B k } � { ( � { (G,k G,k) | Max clique of G has size k} in BH ) | Max clique of G has size k} in BH 2 2 Σ 3 then PH= Σ � Kadin � p . Kadin: If : If BH BH k =BH k+1 p . k =BH k+1 then PH= 3

  52. Probabilistic Computation Probabilistic Computation PSPACE P #P PH Σ 4 p Π 4 p ∆ 4 p Σ 3 p Π 3 p ∆ 3 p Σ 2 p Π 2 p ∆ 2 p Σ 1 p =NP Co-NP= Π 1 p P= ∆ 1 p

  53. Probabilistic Computation Probabilistic Computation Sipser-Gács-Lautemann 1983 PSPACE P #P PH Σ 4 p Π 4 p ∆ 4 p Σ 3 p Π 3 p ∆ 3 p Σ 2 p Π 2 p BPP ∆ 2 p Σ 1 p =NP Co-NP= Π 1 p P= ∆ 1 p

  54. Interactive Proof Systems Interactive Proof Systems � Papadimitriou 1985 � Papadimitriou 1985 – – Alternation between Alternation between nondeterministic and probabilistic players nondeterministic and probabilistic players � Interactive Proof Systems � Interactive Proof Systems – Public Coin: Babai Public Coin: Babai- -Moran 1988 Moran 1988 – – Private Coin: Private Coin: Goldwasser Goldwasser- -Micali Micali- -Rackoff Rackoff 1989 1989 – – Equivalent: Goldwasser Equivalent: Goldwasser- -Sipser 1989 Sipser 1989 –

  55. Interactive Proof Systems Interactive Proof Systems Babai-Moran 1988 PSPACE P #P PH Σ 4 p Π 4 p ∆ 4 p Σ 3 p Π 3 p ∆ 3 p Σ 2 p Π 2 p AM MA BPP ∆ 2 p Σ 1 p =NP Co-NP= Π 1 p P= ∆ 1 p

Recommend


More recommend