bernstein centre for enhanced langlands parameters
play

Bernstein centre for enhanced Langlands parameters Ahmed Moussaoui - PowerPoint PPT Presentation

Bernstein centre for enhanced Langlands parameters Ahmed Moussaoui University of Calgary December 5, 2015 Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 1 / 37 Bernstein


  1. Bernstein centre for enhanced Langlands parameters Ahmed Moussaoui University of Calgary December 5, 2015 Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 1 / 37

  2. Bernstein decomposition Let G be a connected reductive group over a p -adic field F . The set of (equivalences classes of) irreducibles representations of G is decomposed as � Irr ( G ) = Irr ( G ) s , s ∈B ( G ) where s = [ M , σ ] with M a Levi subgroup of G and σ ∈ Irr ( M ) cuspidal. There is a map Sc : Irr ( G ) − → Ω( G ) which associate to an irreducible representation its cuspidal support. Question How to define the Bernstein decomposition for Langlands parameters ? What is the notion of cuspidal Langlands parameter ? of cuspidal support ? Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 2 / 37

  3. Generalized Springer correspondence Let H be a complex connected reductive group For all x ∈ H , we denote A H ( x ) = Z H ( x ) / Z H ( x ) ◦ . � � � � N + ( C H H = u , η ) � u ∈ H unipotent , η ∈ Irr ( A H ( u )) We denote by S H the set of ( H -conjugacy classes of) triples ( L , C L v , ε ) with L a Levi subgroup of H ; C L v an unipotent L -orbit ; ε ∈ Irr ( A L ( v )) cuspidal. For all H , the triple ( T , { 1 } , 1 ) ∈ S H , and N H ( T ) / T is the Weyl group of H ; A H ( u ) ε H condition unipotent orbi n = 1 O ( 1 ) { 1 } 1 GL n ( Z / 2 Z ) d ε ( z 2 i ) = ( − 1 ) i 2 n = d ( d + 1 ) O ( 2 d , 2 d − 2 ,..., 4 , 2 ) Sp 2 n n = d 2 ( Z / 2 Z ) d − 1 SO n O ( 2 d − 1 , 2 d − 3 ,..., 3 , 1 ) ε ( z 2 i − 1 z 2 i + 1 ) = − 1 Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 3 / 37

  4. Let u ∈ G be a unipotent element and ε ∈ Irr ( A H ( u )) . Let P = LU be a parabolic subgroup of H and v ∈ L be a unipotent element. We define � � gZ L ( v ) ◦ U | g ∈ H , g − 1 ug ∈ vU Y u , v = and d u , v = 1 2 ( dim Z H ( u ) − dim Z L ( v )) . Then dim Y u , v � d u , v and Z H ( u ) acts on Y u , v by left translation. We denote by S u , v the permutation representation on the irreducibles components of Y u , v of dimension d u , v . If P = B = TU , then � � � B ′ ∈ B | u ∈ B ′ � gB ∈ H / B | g ∈ H , g − 1 ug ∈ U Y u , 1 = = = B u . Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 4 / 37

  5. Definition We say that ε is cuspidal, if and only if, for all proper parabolic subgroup P = LU , for all unipotent v ∈ L , we have Hom A G ( u ) ( ε, S u , v ) = 0. Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 5 / 37

  6. Generalized Springer correspondence � � � � N + ( C H � u ∈ H unipotent , η ∈ Irr ( A H ( u )) H = u , η ) S H the set of ( H -conjugacy classes of) triples ( L , C L v , ε ) with L a Levi subgroup of H ; C L v an unipotent L -orbit ; ε ∈ Irr ( A L ( v )) cuspidal. We denote by W H L = N H ( L ) / L . Theorem (Lusztig,1984) � N + Irr ( W H H ≃ L ) ( L , C L v ,ε ) ∈S H ( C H → ( L , C L u , η ) ← v , ε ; ρ ) Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 6 / 37

  7. Generalized Springer correspondence in a disconnected case We suppose now that H is a reductive not necessarily connected H acts by conjugation on N + H ◦ and S H ◦ . Proposition (M.) The generalized Springer correspondence for H ◦ is H -équivariante, i.e. h · ( C H ◦ → h · ( L ◦ , C L ◦ u , η ) ← v , ε ; ρ ) . Définition We call quasi-Levi subgroup of H a subgroup of the form L = Z H ( A ) , where A is a torus contained in H ◦ . The neutral component of a quasi-Levi subgroup of H is a Levi subgroup of H ◦ . L ◦ = N H ◦ ( L ◦ ) / L ◦ as normal subgroup. W H L = N H ( A ) / Z H ( A ) admits W H ◦ Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 7 / 37

  8. Generalized Springer correspondence in a disconnected case Let u ∈ H ◦ be unipotent et ε ∈ Irr ( A H ( u )) . We say that ε is cuspidal if all irreducibles subrepresentations of A H ◦ ( u ) which appear in the restrcition to A H ◦ ( u ) are cuspidals. We denote by � � u , η ) , u ∈ H ◦ unipotent , η ∈ Irr ( A H ( u )) N + ( C H H = S H the set of ( H -conjugacy classes of) triples ( L , C L v , ε ) avec L quasi-Levi subgroup of H ; C L v a unipotent L -orbit ; ε ∈ Irr ( A L ( v )) cuspidal. Theorem (M.) For H = O n , � N + Irr ( W H H ≃ L ) ( L , C L v ,ε ) ∈S H ( C H → ( L , C L u , η ) ← v , ε, ρ ) Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 8 / 37

  9. Langlands correspondence Let be F a p -adic field and G a split reductive connected group over F . We denote by � G the Langlands dual group of G , W F the Weil group of F and W ′ F = W F × SL 2 ( C ) the Weil-Deligne group. Définition A Langlands parameter of G is a continous morphism → � φ : W ′ F − G , such that φ SL 2 ( C ) is algebraic ; φ ( W F ) consist of semisimple elements. We denote by Φ( G ) the set of � G -conjugation classes of Langlands parameters of G . Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 9 / 37

  10. Langlands correspondence We denote by Irr ( G ) the set of (smooth) irreducible representations of G . Conjecture There exists a finite to one map rec G : Irr ( G ) − → Φ( G ) . Hence, � Irr ( G ) = Π φ ( G ) . φ ∈ Φ( G ) There exists a bijection Π φ ( G ) ≃ Irr ( S G φ ) , avec S G G ( φ ) ◦ Z � φ = Z � G ( φ ) / Z � G . + other proprieties. Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 10 / 37

  11. Langlands correspondence The Langlands correspondence is proved for GL n by Harris et Taylor ; Henniart et Scholze, for SO n et Sp 2 n by Arthur. We denote by � � � � Φ( G ) + = � φ ∈ Φ( G ) , η ∈ Irr ( S G ( φ, η ) φ ) . Then rec + G : Irr ( G ) ≃ Φ( G ) + . Properties of the Langlands correspondence : for all φ ∈ Φ( G ) , the following are equivalent one element in Π φ ( G ) is in the discrete serie ; all elements in Π φ ( G ) are in the discrete serie ; φ ∈ Φ( G ) 2 (is discrete). Supercuspidal ? Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 11 / 37

  12. Jordan bloc of discrete series Let G be one of the split groups Sp 2 n ( F ) or SO n ( F ) . For all unitary irreducible supercuspidal representation π de GL d π ( F ) and for all integer a � 1, the induced representation a − 1 a − 3 1 − a 2 × π | | 2 × . . . × π | | 2 , π | | admit a unique irreducible subrepresentation of GL ad π ( F ) : St ( π, a ) . Let τ be an irreducible discrete serie of G . We denote by Jord ( τ ) = { ( π, a ) } with π an unitary irreducible supercuspidal representation of a GL d π ( F ) and a � 1 such that there exists an integer a ′ which verify :  a ≡ a ′ mod 2  St ( π, a ) ⋊ τ irréductible  St ( π, a ′ ) ⋊ τ réductible Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 12 / 37

  13. Jordan bloc of discrete series Let ϕ ∈ Φ( G ) a discrete parameter. The decomposition of Std ◦ φ , where Std : � → GL N � G ֒ G ( C ) is : � � Std ◦ φ = π ⊠ S a . π ∈ I ϕ a ∈ J π We call Jordan bloc of ϕ and we denote by Jord ( ϕ ) = { ( π, a ) | π ∈ I ϕ , a ∈ J π } . Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 13 / 37

  14. Jordan bloc of discrete series Jord ( ϕ ) without hole (or jump) ⇐ ⇒ (( π, a ) ∈ Jord ( ϕ ) et a � 3 = ⇒ ( π, a − 2 ) ∈ Jord ( ϕ )) . A � G ( ϕ ) is generated by � z π, a pour ( π, a ) ∈ Jord ( ϕ ) et a pair pour ( π, a ) , ( π, a ′ ) ∈ Jord ( ϕ ) without parity condition on a , a ′ z π, a z π, a ′ ( π, a ) , ( π, a ′ ) ∈ Jord ( ϕ ) , with a ′ < a , consecutive ⇔ for all b ∈ � a ′ + 1 , a − 1 � , ( π, b ) �∈ Jord ( ϕ ) . a π, min the smallest integer a � 1 such that ( π, a ) ∈ Jord ( ϕ ) . Définition G ( ϕ ) is alternate if for all ( π, a ) , ( π, a ′ ) ∈ Jord ( ϕ ) A character ε of A � consecutive, ε ( z π, a z π, a ′ ) = − 1 and if for all ( π, a π, min ) ∈ Jord ( ϕ ) with a π, min evenn, ε ( z π, a π, min ) = − 1. Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 14 / 37

  15. Jordan bloc of discrete series Theorem (Mœglin) The Langlands classification of discrete series of G by Arthur induce a bijection between the set of irreducible supercuspidal representation of G and the set of pairs ( ϕ, ε ) such that Jord ( ϕ ) is without holes and ε is alternate ; the bijection τ �→ ( ϕ, ε ) is defined by Jord ( ϕ ) = Jord ( τ ) et ε = ε τ . Ahmed Moussaoui (University of Calgary) Bernstein centre for enhanced Langlands parameters December 5, 2015 15 / 37

Recommend


More recommend