benchmarking the nmssm with nmssmtools 2 0
play

Benchmarking the NMSSM with NMSSMTools 2.0 __________________ GDR - PowerPoint PPT Presentation

Benchmarking the NMSSM with NMSSMTools 2.0 __________________ GDR SUSY, Strasbourg April 2008 Cyril Hugonie Cyril.Hugonie@univ-montp2.fr LPTA, Montpellier C. Hugonie, GDR SUSY08 p.1/21 Why The NMSSM? No Higgs observed at LEP High


  1. Benchmarking the NMSSM with NMSSMTools 2.0 __________________ GDR SUSY, Strasbourg April 2008 Cyril Hugonie Cyril.Hugonie@univ-montp2.fr LPTA, Montpellier C. Hugonie, GDR SUSY’08 – p.1/21

  2. Why The NMSSM? No Higgs observed at LEP ⇒ High fine tuning in the MSSM µ -problem of the MSSM: µ ? ∼ M susy ∼ M weak µ = 0 � experimentally excluded µ = M Pl � hierarchy problem C. Hugonie, GDR SUSY’08 – p.2/21

  3. Why The NMSSM? No Higgs observed at LEP ⇒ High fine tuning in the MSSM µ -problem of the MSSM: µ ? ∼ M susy ∼ M weak µ = 0 � experimentally excluded µ = M Pl � hierarchy problem Solution: add a singlet S coupled to H u , H d W NMSSM = µH u H d + λSH u H d + κ 3 S 3 (+ Yukawas) After minimisation of the potential: µ eff ≡ λ � S � ∼ M susy C. Hugonie, GDR SUSY’08 – p.2/21

  4. Why The NMSSM? No Higgs observed at LEP ⇒ High fine tuning in the MSSM µ -problem of the MSSM: µ ? ∼ M susy ∼ M weak µ = 0 � experimentally excluded µ = M Pl � hierarchy problem Solution: add a singlet S coupled to H u , H d W NMSSM = µH u H d + λSH u H d + κ 3 S 3 (+ Yukawas) After minimisation of the potential: µ eff ≡ λ � S � ∼ M susy Simplest SUSY extension of the SM where the EW scale originates from the SUSY breaking scale only λ → 0 , µ eff � = 0 : MSSM + decoupled singlet sector ⇒ The parameter space of the NMSSM includes the physics of the MSSM and more C. Hugonie, GDR SUSY’08 – p.2/21

  5. What’s the NMSSM? Particle content: � χ 0 S : one more neutralino � � i =1 .. 5 S R : one more neutral CP even � h i =1 , 2 , 3 S I : one more neutral CP odd � a i =1 , 2 ⇒ New Physics beyond the MSSM ( � S LSP , light h → aa ) C. Hugonie, GDR SUSY’08 – p.3/21

  6. What’s the NMSSM? Particle content: � χ 0 S : one more neutralino � � i =1 .. 5 S R : one more neutral CP even � h i =1 , 2 , 3 S I : one more neutral CP odd � a i =1 , 2 ⇒ New Physics beyond the MSSM ( � S LSP , light h → aa ) Parameters: V Higgs = V F + V D + V soft � � λA λ H u H d S + κ 3 A κ S 3 + h . c . + m 2 H u | H u | 2 + m 2 H d | H d | 2 + m 2 S | S | 2 V soft = C. Hugonie, GDR SUSY’08 – p.3/21

  7. What’s the NMSSM? Particle content: � χ 0 S : one more neutralino � � i =1 .. 5 S R : one more neutral CP even � h i =1 , 2 , 3 S I : one more neutral CP odd � a i =1 , 2 ⇒ New Physics beyond the MSSM ( � S LSP , light h → aa ) Parameters: V Higgs = V F + V D + V soft � � λA λ H u H d S + κ 3 A κ S 3 + h . c . + m 2 H u | H u | 2 + m 2 H d | H d | 2 + m 2 S | S | 2 V soft = + 3 minimisation conditions: g 2 � � H u � 2 + � H d � 2 � tan β = � H u � M 2 µ eff = λ � S � , � H d � , Z = ¯ ⇒ 6 free parameters: λ, κ, A λ , A κ , µ eff , tan β Recall: in the MSSM, 2 free parameters ( m A , tan β ) C. Hugonie, GDR SUSY’08 – p.3/21

  8. Constraining the parameters mSUGRA : M 1 / 2 , m 0 , A 0 ( M GUT ), λ , κ , tan β , sgn( µ eff ) ( M weak )? = ⇒ 1 free parameter ( µ eff ) for 3 min. conditions at M weak C. Hugonie, GDR SUSY’08 – p.4/21

  9. Constraining the parameters mSUGRA : M 1 / 2 , m 0 , A 0 ( M GUT ), λ , κ , tan β , sgn( µ eff ) ( M weak )? = ⇒ 1 free parameter ( µ eff ) for 3 min. conditions at M weak Solution: non-universal singlet soft terms at M GUT Parameters: λ , tan β , sgn( µ eff ) , M 1 / 2 , m 0 , A 0 , [ A κ ] ⇒ µ eff , κ , m 2 Minimisation conditions = S at M weak C. Hugonie, GDR SUSY’08 – p.4/21

  10. Constraining the parameters mSUGRA : M 1 / 2 , m 0 , A 0 ( M GUT ), λ , κ , tan β , sgn( µ eff ) ( M weak )? = ⇒ 1 free parameter ( µ eff ) for 3 min. conditions at M weak Solution: non-universal singlet soft terms at M GUT Parameters: λ , tan β , sgn( µ eff ) , M 1 / 2 , m 0 , A 0 , [ A κ ] ⇒ µ eff , κ , m 2 Minimisation conditions = S at M weak Guess M GUT and κ , m 2 S at this scale Run the RGEs down to M weak , compute µ eff , κ , m 2 S Run the RGEs up to M GUT , distance from universality ⇒ For the true CNMSSM see talk by A. Teixeira = C. Hugonie, GDR SUSY’08 – p.4/21

  11. Constraining the parameters mSUGRA : M 1 / 2 , m 0 , A 0 ( M GUT ), λ , κ , tan β , sgn( µ eff ) ( M weak )? = ⇒ 1 free parameter ( µ eff ) for 3 min. conditions at M weak Solution: non-universal singlet soft terms at M GUT Parameters: λ , tan β , sgn( µ eff ) , M 1 / 2 , m 0 , A 0 , [ A κ ] ⇒ µ eff , κ , m 2 Minimisation conditions = S at M weak Guess M GUT and κ , m 2 S at this scale Run the RGEs down to M weak , compute µ eff , κ , m 2 S Run the RGEs up to M GUT , distance from universality ⇒ For the true CNMSSM see talk by A. Teixeira = GMSB : messenger scale M mess and M susy ≡ m 2 / (16 π 2 M mess ) � � λA λ H u H d S + κ 3 A κ S 3 + m S S 2 + ξ S S + h . c . ′ 2 + m 2 S | S | 2 ∆ V soft = λ 2 susy and ∆ W = µ ′ S 2 + ξ F S +∆ m 2 H U = ∆ m 2 (16 π 2 ) 2 ∆ H M 2 H D = − ⇒ See talk by U. Ellwanger = C. Hugonie, GDR SUSY’08 – p.4/21

  12. NMSSMTools 2.0 Package that contains 3 programs: NMHDECAY for general NMSSM NMSPEC for mSUGRA (with some non-universality) NMGMSB for GMSB (new in v2.0 ) each in 3 versions: 1point, random scan, grid scan C. Hugonie, GDR SUSY’08 – p.5/21

  13. NMSSMTools 2.0 Package that contains 3 programs: NMHDECAY for general NMSSM NMSPEC for mSUGRA (with some non-universality) NMGMSB for GMSB (new in v2.0 ) each in 3 versions: 1point, random scan, grid scan For a given set of free parameters, it computes: Sparticle/Higgs masses and mixings Higgs decay widths (as in HDECAY ) DM relic density (using MicrOMEGAs 2.0 ) ⇒ See talk by G. Bélanger = b → sγ , B s → µµ , B + → τν , ∆ m d , ∆ m s and a µ = ⇒ See talk by F . Domingo C. Hugonie, GDR SUSY’08 – p.5/21

  14. NMSSMTools 2.0 Package that contains 3 programs: NMHDECAY for general NMSSM NMSPEC for mSUGRA (with some non-universality) NMGMSB for GMSB (new in v2.0 ) each in 3 versions: 1point, random scan, grid scan For a given set of free parameters, it computes: Sparticle/Higgs masses and mixings Higgs decay widths (as in HDECAY ) DM relic density (using MicrOMEGAs 2.0 ) ⇒ See talk by G. Bélanger = b → sγ , B s → µµ , B + → τν , ∆ m d , ∆ m s and a µ = ⇒ See talk by F . Domingo I/O files in SLHA2 conventions + script run PATH/ P inp S : ⇒ PATH/ P spectr S , P decay S , P omega S (1point) ⇒ PATH/ P out S , P err S (scan) new in v2.0 C. Hugonie, GDR SUSY’08 – p.5/21

  15. Input file (1) mSUGRA C. Hugonie, GDR SUSY’08 – p.6/21

  16. Input file (2) Grid scan C. Hugonie, GDR SUSY’08 – p.7/21

  17. Experimental constraints For each point in the parameter space, NMSSMTools checks: χ 0 1 is the LSP � χ ± ’s and � χ 0 ’s (direct search + Γ inv ( Z ) ) LEP limits on � Tevatron + LEP constraints on squarks/gluino LEP limit on the charged Higgs mass m h ± > 78 . 6 GeV LEP constraints from neutral Higgs searches: e + e − → hZ with h → b ¯ b , τ + τ − , jj , γγ , invisible, "any" e + e − → hZ with h → aa and a → b ¯ b or τ + τ − e + e − → ha with h/a → b ¯ b or τ + τ − e + e − → ha with h → aa and a → b ¯ b or τ + τ − WMAP constraints: . 094 < Ω h 2 < . 136 BABAR and BELLE limits on B physics BNL constraints on a µ from e + e − data ( 3 σ from SM) C. Hugonie, GDR SUSY’08 – p.8/21

  18. Results with semi-universality If λ ≪ 1 , � S can be the LSP = ⇒ additional cascades at LHC Can this scenario be compatible with WMAP? YES! S − m NSLP < ... modulo some fine tuning ( m e ∼ 1 GeV ) C. Hugonie, GDR SUSY’08 – p.9/21

  19. Results with semi-universality If λ ≪ 1 , � S can be the LSP = ⇒ additional cascades at LHC Can this scenario be compatible with WMAP? YES! S − m NSLP < ... modulo some fine tuning ( m e ∼ 1 GeV ) µA κ < 0 : singlet masses ր with m 0 and/or M 1 / 2 ⇒ � = S LSP for small values of m 0 and/or M 1 / 2 C. Hugonie, GDR SUSY’08 – p.9/21

  20. Singlino LSP (1) λ = . 01 , µ A κ < 0 tan β = 10, A 0 = -20 GeV, A κ = -50 GeV tan β = 5, A 0 = 200 GeV, A κ = -10 GeV 1100 1100 ∼ LSP S ∼) < .136 2 (B Ω h ∼) < .136 900 900 2 (S Ω h − + e a µ from e LEP Higgs + λ=.001 700 700 + m t =175 GeV M 1/2 ∼ LSP τ [GeV] excluded 500 500 300 300 100 100 0 100 200 300 400 500 600 0 100 200 300 400 500 600 m 0 [GeV] m 0 [GeV] C. Hugonie, GDR SUSY’08 – p.10/21

  21. Results with semi-universality If λ ≪ 1 , � S can be the LSP = ⇒ additional cascades at LHC Can this scenario be compatible with WMAP? YES! S − m NSLP < ... modulo some fine tuning ( m e ∼ 1 GeV ) µA κ < 0 : singlet masses ր with m 0 and/or M 1 / 2 ⇒ � = S LSP for small values of m 0 and/or M 1 / 2 µA κ > 0 : singlet masses ց with m 0 and M 1 / 2 ⇒ � = S LSP for large values of m 0 and M 1 / 2 C. Hugonie, GDR SUSY’08 – p.11/21

  22. Singlino LSP (2) λ = . 01 , µ A κ > 0 tan β = 10, A 0 = 250 GeV, A κ = 270 GeV tan β = 5, A 0 = 750 GeV, A κ = 10 GeV 550 1100 ∼ LSP S 500 ∼) < .136 2 (B Ω h ∼) < .136 900 2 (S Ω h 450 − + e a µ from e LEP Higgs 400 ∼ LSP τ 700 excluded M 1/2 350 [GeV] 500 300 250 300 200 150 100 0 100 200 300 400 0 200 400 600 800 1000 m 0 [GeV] m 0 [GeV] C. Hugonie, GDR SUSY’08 – p.12/21

Recommend


More recommend