basics on differential algebraic equations daes
play

Basics on Differential-Algebraic Equations (DAEs) Stephan Trenn - PowerPoint PPT Presentation

Basics on Differential-Algebraic Equations (DAEs) Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern ICCAS 2014, Seoul, Korea October 23rd, 2014, Tutorial Session TA06 Motivation DAEs vs. ODEs Special


  1. Basics on Differential-Algebraic Equations (DAEs) Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern ICCAS 2014, Seoul, Korea October 23rd, 2014, Tutorial Session TA06

  2. Motivation DAEs vs. ODEs Special DAE-cases QKF/QWF Wong sequences Inconsistent initial values Switched DAEs Contents Motivation: Modeling of electrical circuits 1 DAEs: Differences to ODEs 2 Special DAE-cases 3 Nilpotent DAEs Underdetermined DAEs Overdetermined DAEs Equivalence and quasi-Kronecker form/quasi-Weierstrass form 4 Wong sequences 5 Inconsistent initial values 6 Motivating example Consistency projector Switched DAEs 7 Definition and solution theory Impulse-freeness Stability Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern Basics on Differential-Algebraic Equations (DAEs)

  3. Motivation DAEs vs. ODEs Special DAE-cases QKF/QWF Wong sequences Inconsistent initial values Switched DAEs Modeling of electrical circuits v L i L Basic circuit elements L i R i C Resistor : v R ( t ) = R i R ( t ) i S i C ( t ) = C d Capacitor : d t v C ( t ) v S v C v R u ( t ) C R v L ( t ) = L d Inductor : d t i L ( t ) Voltage source : v S ( t ) = u ( t ) DAEs All components are given by a differential-algebraic equation (DAE) E ˙ x = Ax + Bu Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern Basics on Differential-Algebraic Equations (DAEs)

  4. Motivation DAEs vs. ODEs Special DAE-cases QKF/QWF Wong sequences Inconsistent initial values Switched DAEs Hierarchical model building v L i L Overall model ⇒ Again DAE: L i S i C i R v S v C v R E ˙ x = Ax + Bu u ( t ) C R           v R ˙ 0 0 -1 R v R ˙ i R C 0 0 1 i R                     v C ˙ 0 L 1 0 v C                     ˙ 0 0 i C -1 0 i C 1           = + u           0 v L ˙ 1 -1 v L                     ˙ 0 1 1 -1 i L i L                     0 1 1 -1 v S v S ˙           0 ˙ 1 -1 i S i S Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern Basics on Differential-Algebraic Equations (DAEs)

  5. Motivation DAEs vs. ODEs Special DAE-cases QKF/QWF Wong sequences Inconsistent initial values Switched DAEs Contents Motivation: Modeling of electrical circuits 1 DAEs: Differences to ODEs 2 Special DAE-cases 3 Nilpotent DAEs Underdetermined DAEs Overdetermined DAEs Equivalence and quasi-Kronecker form/quasi-Weierstrass form 4 Wong sequences 5 Inconsistent initial values 6 Motivating example Consistency projector Switched DAEs 7 Definition and solution theory Impulse-freeness Stability Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern Basics on Differential-Algebraic Equations (DAEs)

  6. Motivation DAEs vs. ODEs Special DAE-cases QKF/QWF Wong sequences Inconsistent initial values Switched DAEs Recall ODEs Ordinary differential equations (ODEs): x = Ax + f ˙ Initial values: arbitrary Solution uniquely determined by f and x (0) No inhomogeneity constraints Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern Basics on Differential-Algebraic Equations (DAEs)

  7. Motivation DAEs vs. ODEs Special DAE-cases QKF/QWF Wong sequences Inconsistent initial values Switched DAEs Simple DAE example DAE example:       0 1 0 1 0 0 f 1  ˙  x + 0 0 0 x = 0 1 0 f 2     0 0 0 0 0 0 f 3 x 1 = − f 1 − ˙ x 2 = x 1 + f 1 ˙ f 2 0 = x 2 + f 2 x 2 = − f 2 0 = f 3 no restriction on x 3 Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern Basics on Differential-Algebraic Equations (DAEs)

  8. Motivation DAEs vs. ODEs Special DAE-cases QKF/QWF Wong sequences Inconsistent initial values Switched DAEs Conclusions from example Solution of example: x 1 = − f 1 − ˙ f 2 x 2 = − f 2 x 3 free f 3 = 0 necessary Differences to ODEs For fixed inhomogeneity, initial values cannot be chosen arbitrarily ( x 1 (0) = − f 1 (0) − ˙ f 2 (0), x 2 (0) = f 2 (0)) For fixed inhomogeneity, solution not uniquely determined by initial value ( x 3 free) Inhomogeneity not arbitrary structural restrictions ( f 3 = 0) differentiability restrictions ( d d t f 2 must be well defined) Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern Basics on Differential-Algebraic Equations (DAEs)

  9. Motivation DAEs vs. ODEs Special DAE-cases QKF/QWF Wong sequences Inconsistent initial values Switched DAEs Contents Motivation: Modeling of electrical circuits 1 DAEs: Differences to ODEs 2 Special DAE-cases 3 Nilpotent DAEs Underdetermined DAEs Overdetermined DAEs Equivalence and quasi-Kronecker form/quasi-Weierstrass form 4 Wong sequences 5 Inconsistent initial values 6 Motivating example Consistency projector Switched DAEs 7 Definition and solution theory Impulse-freeness Stability Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern Basics on Differential-Algebraic Equations (DAEs)

  10. Motivation DAEs vs. ODEs Special DAE-cases QKF/QWF Wong sequences Inconsistent initial values Switched DAEs Nilpotent DAEs   0 ...   1   x = x + f ˙   ... ...     1 0 ⇔ 0 = x 1 + f 1 − → x 1 = − f 1 x 2 = − f 2 − ˙ x 1 = x 2 + f 2 ˙ − → f 1 x 3 = − f 3 − ˙ f 2 − ¨ x 2 = x 3 + f 3 ˙ − → f 1 . . . . . . . . . n � f ( n − i ) x n − 1 = x n + f n ˙ − → x n = − i i =1 Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern Basics on Differential-Algebraic Equations (DAEs)

  11. Motivation DAEs vs. ODEs Special DAE-cases QKF/QWF Wong sequences Inconsistent initial values Switched DAEs General nilpotent DAE with N nilpotent, i.e. N n = 0 In general: N ˙ x = x + f N d ⇒ N 2 ¨ d t x + N ˙ f = x + f + N ˙ x = N ˙ f N d ⇒ N 3 ... x + N 2 ¨ f + N 2 ¨ d t x = N 2 ¨ f = x + f + N ˙ f . . . N d n − 1 n − 1 � � ⇒ N n x ( n ) d t N i f ( i ) N i f ( i ) = x + ⇒ x = − � �� � i =0 i =0 =0 Properties Initial values: fixed by inhomogeneity Solution uniquely determined by f Inhomogeneity constraints: no structural constraints i =0 N i f ( i ) needs to be well defined differentiability constraints: � n − 1 Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern Basics on Differential-Algebraic Equations (DAEs)

  12. Motivation DAEs vs. ODEs Special DAE-cases QKF/QWF Wong sequences Inconsistent initial values Switched DAEs Underdetermined DAEs n     1 0 0 1 ... ... ... ...          ˙ x =  x + f n − 1     1 0 0 1   1 0 0 1         x 1 ˙ 0 1 x 1 0 . . . ... ...         . . . . . .         ⇔  =  +  + f         x n − 2 ˙ 0 1 x n − 2 0      x n − 1 ˙ 0 x n − 1 x n ⇔ ODE with additional “input” x n Properties Initial values: arbitrary Solution not uniquely determined by x (0) and f Inhomogeneity constraints: none Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern Basics on Differential-Algebraic Equations (DAEs)

  13. Motivation DAEs vs. ODEs Special DAE-cases QKF/QWF Wong sequences Inconsistent initial values Switched DAEs Overdetermined DAEs n     0 1 ... ...     1 0      ...   ...  x = ˙ x + f n + 1     0 1     1 0 0 1     1 0     0 f 1 ... .     . 1 .     ⇔ x = x + ˙  ∧ ˙ x n = f n +1  ...    f n − 1  0   1 0 f n � �� � =: N n − 1 n � � N i f ( i ) ∧ ˙ ! f n − i +1 ⇔ x = − x n = − = f n +1 i i =0 i =1 � �� � ⇔ � n +1 i =1 f ( n +1 − i ) = 0 i Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern Basics on Differential-Algebraic Equations (DAEs)

  14. Motivation DAEs vs. ODEs Special DAE-cases QKF/QWF Wong sequences Inconsistent initial values Switched DAEs Overdetermined DAEs properties n − 1 n +1 � � N i f ( i ) ∧ f ( n +1 − i ) x = − = 0 i i =0 i =1 Properties Initial valus: fixed by inhomogeneity Solution uniquely determined by f Inhomogeneity constraints i =1 f ( n +1 − i ) structural constraint: � n +1 = 0 i differentiability constraint: f ( n +1 − i ) needs to be well defined i No other cases All DAEs are combinations of ODEs, nilpotent DAEs, underdetermined DAEs, overdetermined DAEs Stephan Trenn Technomathematics group, Dept. of Mathematics, University of Kaiserslautern Basics on Differential-Algebraic Equations (DAEs)

Recommend


More recommend