baryon in the sextet gauge model
play

Baryon in the sextet gauge model Zoltan Fodor, Kieran Holland, - PowerPoint PPT Presentation

Baryon in the sextet gauge model Zoltan Fodor, Kieran Holland, Julius Kuti, Santanu Mondal, Daniel Nogradi, Chik Him Wong Lattice Higgs Collaboration ( L at HC ) Composite Higgs Model Strongly coupled gauge theory. Electroweak symmetry


  1. Baryon in the sextet gauge model Zoltan Fodor, Kieran Holland, Julius Kuti, Santanu Mondal, Daniel Nogradi, Chik Him Wong Lattice Higgs Collaboration ( L at HC )

  2. Composite Higgs Model • Strongly coupled gauge theory. • Electroweak symmetry breaking is realized by spontaneous chiral symmetry breaking; and three Goldstone bosons are eaten up to give three massive gauge bosons ( W ± , Z 0 ). • Higgs is a composite particle of vacuum quantum numbers 0 ++

  3. Possible dark matter candidates Electroweak singlet Goldstone boson → Possible for the models with more than three PNGBs. Weak singlet ⇒ can be light. N f = 2 pseudo-real SU(2) gauge model: Flavour symmetry group is SU(2 N f ) Most attractive channel breaks SU(4) − → Sp(4) ⇒ 5 Goldstone bosons. One of these can be a DM candidate (Lewis,Pica,Sannino in PRD 85, 014504 (2012)).

  4. Dark Baryon Stable, electrically neutral, neutron like state, but has weak hypercharge. ⇒ Needed to be heavy enough from experimental constraint N f = 2 SU(3) gauge theory with fermions in sextet representation: Symmetry breaking: SU ( 2 ) × SU ( 2 ) − → SU ( 2 ) : 3 PNGBs → three massive electroweak gauge bosons.

  5. Why N f = 2, SU(3) Sextet Gauge model? Minimal realization of composite Higgs mechanism. Walking behaviour L at HC : Phys. Lett. B 718, 657, PoS of LATTICE 2014; Kogut and Sinclair, Phys. Rev. D 84, 074504 (2011), Phys. Rev. D 81, 114507 (2010) Expectedly low S parameter S ∼ N ( N +1) . N f 2 2 Estimate from resonance spectrum shows it is not QCD like (T. Appelquist and F. Sannino, Phys. Rev. D 59 , 067702 (1999) [hep-ph/9806409] ) .

  6. Symmetry braking: SU (2) R × SU (2) L − → SU (2) V Exactly three Goldstone modes − → eaten up to give the three massive gauge bosons. Can give a light composite scalar state with Higgs quantum numbers (0 ++ ) L at HC : PoS LATTICE 2013, 062 (2014); Z. Fodor, PoS of LATTICE 2014

  7. Is neutral baryon stable? Charge assignments: → +2 u − 3 → − 1 d − 3 Sextet neutron udd : electrically neutral Lightest because of elctromagnetic correction Stable .....unlike QCD

  8. Constructing nucleon operator in continuum Color singlet: 6 ⊗ 6 ⊗ 6 = 1 ⊕ 2 × 8 ⊕ 10 ⊕ 10 ⊕ 3 × 27 ⊕ 28 ⊕ 2 × 35 (1) → Only one singlet possible. Ψ ≡ (Ψ 0 , Ψ 1 ,..., Ψ 5 ) a vector in the sextet representation of SU(3) T ′ T ABC Ψ A Ψ B Ψ C aa ′ bb ′ cc ′ ψ aa ′ ψ bb ′ ψ cc ′ ≡ ε abc ε a ′ b ′ c ′ ψ aa ′ ψ bb ′ ψ cc ′ = (2) → ψ ′ aa ′ = U ab U a ′ b ′ ψ bb ′ ψ aa ′ − (3) Then ε abc ε a ′ b ′ c ′ ψ aa ′ ψ bb ′ ψ cc ′ → ε abc ε a ′ b ′ c ′ U ad U a ′ d ′ U be U b ′ e ′ U cf U c ′ f ′ ψ dd ′ ψ ee ′ ψ ff ′ − = ε def ε d ′ e ′ f ′ det U det U ψ dd ′ ψ ee ′ ψ ff ′ = ε def ε d ′ e ′ f ′ ψ dd ′ ψ ee ′ ψ ff ′ (4) since det U = 1.

  9. → Singlet → T ABC symmetric. Correct J PC ⇒ nucleon operator antisymmetric under exchange of spin indices. ⇒ Symmetric in flavour (Spin Statistics Theorem).

  10. Flavour SU(2) irrep: 2 × 2 × 2 = 1 A +2 × 2 M +4 s (5) Thus sextet nucleon belongs to 2 M irrep. An example: Tritium isotope H 3 with pnn or the Helium isotope He 3 with ppn as baryon ground states. Color singlet contituents ⇒ spin-flavour structure will be similar as of sextet nucleon. This comes from a Slater determinant combining mixed representations of permutations.

  11. sextet baryon in quark language In quark language our two fermions have SU(2) flavor symmetry and eight states can be formed: uuu, uud, udu, udd, duu, dud, ddu, ddd They are groupped into an isospin quadruplet and two isospin doublets. The quadruplet belongs to the symmetric rep. � 3 2 , 3 � � = uuu � 2 √ � 3 2 , 1 � � = ( uud + udu + duu ) / 3 � 2 √ � 3 2 , − 1 � � = ( ddu + dud + udd ) / 3 � 2 � 3 2 , − 3 � � = ddd � 2

  12. We also have two doublets which have mixed symmetries: � 1 2 , 1 � � = − (2 ddu − udd − dud ) / sqrt 6 � 2 � 1 2 , − 1 � � = (2 uud − udu − duu ) / sqrt 6 � 2 where the mixed symmetry means symmetry under 1 → 2 and 2 → 1 and no definite symmetry under 1 → 3. The other doublet: � 1 2 , 1 � � = ( udd − dud ) / sqrt 2 � 2 � 1 2 , − 1 � � = ( udu − duu ) / sqrt 2 � 2 anti-symmetric under 1 → 2 and no symmetry under 1 → 3. From the combination of the two mixed reps it is possible to construct an anty-symmetric spin-flavor wave function.

  13. Nucleon operator in lattice with staggered fermion A ( x ) [ u β j 5 ) ij d γ j B α i ( x ) = T ABC u α i B ( x ) ( C γ 5 ) βγ ( C ∗ γ ∗ C ( x )] Looking for a operator as local as possible. Staggered fields: u α i = 1 Γ α i 8 ∑ η χ u ( η ) η where η ≡ ( η 1 , η 2 , η 3 , η 4 ), Γ( η ) = γ η 1 1 γ η 2 2 γ η 3 3 γ η 4 4 . − 1 η C γ 5 Γ T η ) χ B u ( η ′ ) χ C 8 2 ∑ Tr ( C γ 5 Γ ′ Diquark ≡ [ ... ] = d ( η ) ηη ′ − 1 δ ηη ′ S ( η ) χ B u ( η ′ ) χ C 8 2 ∑ = d ( η ) ηη ′ − 1 8 2 ∑ S ( η ) χ B u ( η ) χ C = d ( η ) , S ( η ) is a sign factor η

  14. Diquark populates 16 corner of the hypercube. Writing the third quark in staggered basis: 1 u ( η ′ ) ∑ B α i ( x ) = − T ABC 8 3 ∑ Γ α i η ′ χ A S ( η ) χ B u ( η ) χ C d ( η ) η ′ η To make the operator confined in a single time-slice an extra term has to be added to or subtracted from the diquark part. → Similar to the construction of single time-slice staggered meson operator. → corresponds to the parity partner. 1 u ( η ′ ) ∑ B α i ( x ) = − T ABC Γ α i η ′ χ A S ( η ) χ B u ( η ) χ C 8 3 ∑ d ( η ) η η ′ η ≡ ( η 1 , η 2 , η 3 ) , η ′ ≡ ( η ′ 1 , η ′ 2 η ′ 3 )

  15. Hence B α i ( x ) is sum of 64 terms with proper sign. Local terms vanish individually when contracted with T ABC in color-space → Different from normal QCD where the color contraction tensor is ε abc , antisymmetric. The next simple type of terms is diquark sitting one of the 8 corners and the third quark in any other corner. We use operators of this type for our pilot calculation.

  16. Operators used IV z VIII y x Table: Operator set a Label Operators IV xy χ u (1 , 1 , 0 , 0) χ u (0 , 0 , 0 , 0) χ d (0 , 0 , 0 , 0) IV yz χ u (0 , 1 , 1 , 0) χ u (0 , 0 , 0 , 0) χ d (0 , 0 , 0 , 0) χ u (1 , 0 , 1 , 0) χ u (0 , 0 , 0 , 0) χ d (0 , 0 , 0 , 0) IV zx χ u (1 , 1 , 1 , 0) χ u (0 , 0 , 0 , 0) χ d (0 , 0 , 0 , 0) VIII

  17. IV z VIII y x Table: Operator set b Label Operators χ u (0 , 0 , 0 , 0) χ u (1 , 1 , 0 , 0) χ d (1 , 1 , 0 , 0) IV xy χ u (0 , 0 , 0 , 0) χ u (0 , 1 , 1 , 0) χ d (0 , 1 , 1 , 0) IV yz χ u (0 , 0 , 0 , 0) χ u (1 , 0 , 1 , 0) χ d (1 , 0 , 1 , 0) IV zx χ u (0 , 0 , 0 , 0) χ u (1 , 1 , 1 , 0) χ d (1 , 1 , 1 , 0) VIII

  18. Small ensemble test with different operators 3 x64, β = 3.20, m = 0.007, t max = 20 Vol. = 32 Set a VIII IV_xy 0.65 IV_yz IV_zx 0.6 M N 0.55 0.5 0.45 11 12 13 14 15 Set b 0.65 0.6 M N 0.55 0.5 0.45 11 12 13 14 15 t min Figure: Comparing nucleon mass obtained by different operators.

  19. Chiral extrapolation Preliminary 3 X64, β = 3.200 Vol. = 32 M N = a + b m, a=0.33(2), b=38(2) 2 /dof = 0.5 χ 0.6 0.5 M N 0.4 0.3 0.2 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 m Figure: Chiral extrapolation

  20. Hadron-Spectrum so far M = M 0 + C m M N 0.6 M a 1 M ρ 0.5 M a 0 M π 0.4 M 0.3 0.2 0.1 0 0 0.002 0.004 0.006 0.008 m Figure: Hadron masses versus quark mass

  21. Direct Detection PHYSICAL REVIEW D 88, 014502 (2013) 10 4 10 2 10 0 Rate, event / (kg · day) 10 − 2 10 − 4 10 − 6 10 − 8 10 − 10 10 − 12 N f = 2 N f = 6 10 − 14 XENON100 [1207.5988], 95% CL exclusion 10 − 16 10 − 2 10 − 1 10 0 10 1 10 2 M χ = M B [TeV]

  22. Conclusion and outlook • The value of nucleon mass in sextet gauge model, from our preliminary calculation is 0.33(2) in lattice unit, which is 3193 ± 167 GeV when converted to physical unit. • We also have ensembles on 40 3 × 80 and 48 3 × 96, and also at a finer lattice spacing 3 . 25, thus more systematic studies can be done. • Construction of operators with no mixing in taste space is needed for more precise calculation. • Calculations of magnetic moment and electric charge radius are needed to compare with direct detection experiments.

Recommend


More recommend