barycentric coordinates
play

Barycentric Coordinates Interpolation Barycentric given data at - PDF document

Barycentric Coordinates Interpolation Barycentric given data at sites, interpolate Coordinates smoothly and intuitively in between easy over simplices: linear easy over simplices: linear more general shapes needed


  1. Barycentric Coordinates Interpolation Barycentric  given data at sites, interpolate Coordinates smoothly and intuitively “in between”  easy over simplices: linear  easy over simplices: linear  more general shapes needed  morphing, shape deformation, attribute interpolation, physical modeling, and on and on and on CS 176 Winter 2011 CS 176 Winter 2011 1 2 Basic Principles Basic Setup: Cage Data on boundary; extend  as affine combination: if then  desirables  constant precision:  linear precision:  from now on, we’ll focus on  convex: many choices; concave: few… Weber/Ben-Chen/Gotsman’s method CS 176 Winter 2011 CS 176 Winter 2011 3 4 Planar Case Properties Treat everything in complex plane Complex barycentric interpolation  tools from complex analysis…  preserve similarities  given source and target polygon  distinction with real coeffs?  preserve affine transformation iff ffi f i iff  not actually desirable… why?  desirables: CS 176 Winter 2011 CS 176 Winter 2011 5 6

  2. Real vs. Complex Trade-off Must give up something…  not interpolating anymore How to find such functions?  study continuous setting  Affine transform not quite pleasing… CS 176 Winter 2011 CS 176 Winter 2011 7 8 Not An Interpolation Cauchy Formula Visualize one coordinate function Holomorphic functions  Cauchy kernel:  integral version of mean value theorem  recover value from average of boundary  Cauchy coordinates: CS 176 Winter 2011 CS 176 Winter 2011 9 10 Resulting Formulas Only need data on boundary!  apply to polygon  define f linearly along edge  grind out integrals… CS 176 Winter 2011 CS 176 Winter 2011 11 12

  3. Examples Properties Best holomorphic function?  it doesn’t interpolate; is it “best”?  closest to given boundary data  stick with C j but use “virtual” poly. ti k ith C b t “ i t l” l  minimize functional to find best poly. CS 176 Winter 2011 CS 176 Winter 2011 13 14 Szegö Coordinates Solution Optimize “fit” Pseudo inverse  size is number of vertices (small)  need C j on boundary…  define through limit  letting H be sampling operator:  do point collocation (sample boundary) LSQ problem matrix with sampled C j as columns CS 176 Winter 2011 CS 176 Winter 2011 15 16 Example Visualization CS 176 Winter 2011 CS 176 Winter 2011 17 18

  4. Comparison Another Comparison Cauchy-Green vs Szego CS 176 Winter 2011 CS 176 Winter 2011 19 20 Visualization Point-to-Point Simplify UI  just specify landmarks  underconstrain (typically)  add fairness constraint dd CS 176 Winter 2011 CS 176 Winter 2011 21 22 P2P Coordinates Example Joint minimization  point collocation… CS 176 Winter 2011 CS 176 Winter 2011 23 24

  5. Visualization Example CS 176 Winter 2011 CS 176 Winter 2011 25 26 Video CS 176 Winter 2011 27

Recommend


More recommend