banach spaces containing many complemented subspaces
play

Banach spaces containing many complemented subspaces Manuel Gonzlez - PowerPoint PPT Presentation

Banach spaces containing many complemented subspaces Manuel Gonzlez Departamento de Matemticas Universidad de Cantabria, Santander, Spain Workshop on Banach spaces and Banach lattices ICMAT Madrid. September 9-13, 2019 Joint work with


  1. Banach spaces containing many complemented subspaces Manuel González Departamento de Matemáticas Universidad de Cantabria, Santander, Spain Workshop on Banach spaces and Banach lattices ICMAT Madrid. September 9-13, 2019 Joint work with Javier Pello (URJC, Móstoles) Manuel González (Santander) Many complemented subspaces September 13, 2019 1 / 16

  2. Subprojective and superprojective Banach spaces NOTE: Subspaces are always closed. Definition A Banach space X is subprojective if every infinite-dim. subspace of X contains an infinite-dim. subspace complemented in X. The space X is superprojective if every infinite-codim. subspace of X is contained in an infinite-codim. subspace complemented in X. Remark X superprojective if and only if every infinite dim. quotient X / M admits an infinite dim. quotient X / N (M ⊂ N) with N complemented. Manuel González (Santander) Many complemented subspaces September 13, 2019 2 / 16

  3. References [W-64] Robert J. Whitley. Strictly singular operators and their conjugates. Trans. Amer. Math. Soc. 113 (1964), 252–261. [OS-15] Timur Oikhberg and Eugeniu Spinu. Subprojective Banach spaces. J. Math. Anal. Appl. 424 (2015), 613–635. [GP-16] Manuel González and Javier Pello. Superprojective Banach spaces. J. Math. Anal. Appl. 437 (2016), 1140–1151. [GGP-17] Elói M. Galego, Manuel González and Javier Pello. On subprojectivity and superprojectivity of Banach spaces. Results in Math. 71 (2017), 1191–1205. [RS-18] César Ruiz and Víctor M. Sánchez. Subprojective Nakano spaces. J. Math. Anal. Appl. 458 (2018), 332–344. [GP-19] Manuel González and Javier Pello. On subprojectivity of C ( K , X ) . Proc. Amer. Math. Soc. 147 (2019), 3425–3429. [GPS-19] Manuel González, Margot Salas-Brown and Javier Pello. The perturbation classes problem on subprojective and superprojective Banach spaces. Preprint 2019. [GP-20] Manuel González and Javier Pello. Complemented subspaces of J-sums of Banach spaces. In preparation. Manuel González (Santander) Many complemented subspaces September 13, 2019 3 / 16

  4. Basic results and examples [W64] Every subspace of a subprojective space is subprojective. 1 Every quotient of a superprojective space is superprojective. 2 Suppose X is reflexive. Then 3 ⇒ X ∗ superprojective, and X subprojective ⇐ ⇒ X ∗ subprojective. X superprojective ⇐ ℓ p (1 < p < ∞ ) is subprojective and superprojective. 1 ℓ 1 and c 0 are subprojective. 2 L p ( 0 , 1 ) subprojective ⇐ ⇒ 2 ≤ p < ∞ . 3 L p ( 0 , 1 ) superprojective ⇐ ⇒ 1 < p ≤ 2. 4 Manuel González (Santander) Many complemented subspaces September 13, 2019 4 / 16

  5. Duality for non-reflexive spaces [GP16] X subprojective �⇒ X ∗ superprojective: X = c 0 , X ∗ = ℓ 1 . 1 ℓ 1 has a quotient ℓ 1 / M ≃ ℓ 2 . X ∗ subprojective �⇒ X superprojective: X hereditarily reflexive 2 L ∞ -space with X ∗ ≃ ℓ 1 (Bourgain Delbaen). X has a quotient X / M ≃ c 0 . NOTE: X ∗ isometric to ℓ 1 implies X superprojective. 3 Question 1 Suppose X non-reflexive. X superprojective ⇒ X ∗ subprojective? 1 X ∗ superprojective ⇒ X subprojective? 2 Manuel González (Santander) Many complemented subspaces September 13, 2019 5 / 16

  6. Unconditional sums of Banach spaces X , Y subprojective ⇐ ⇒ X × Y subprojective [OS-15]. 1 X , Y superprojective ⇐ ⇒ X × Y superprojective [GP-16]. 2 Let E , X n ( n ∈ N ) be Banach spaces. Suppose that E admits an unconditional basis ( e n ) . We define � � ∞ � E ( X n ) := ( x n ) : x n ∈ X n for each n and � x n � e n ∈ E . n = 1 E , X n ( n ∈ N ) subprojective ⇐ ⇒ E ( X n ) subprojective [OS-15]. 1 E , X n ( n ∈ N ) superprojective ⇐ ⇒ E ( X n ) superprojective [GP-16]. 2 Manuel González (Santander) Many complemented subspaces September 13, 2019 6 / 16

  7. Some negative criteria [GP-16] If there exists a surjective strictly singular operator Q : X → Z 1 then X is not superprojective. If there exists an strictly cosingular embedding operator J : Z → X 2 then X is not subprojective. Proposition The classes of superprojective spaces and subprojective spaces fail the three-space property. Proof. There exists an exact sequence ( Z 2 is the Kalton-Peck space) J Q 0 → ℓ 2 − → Z 2 − → ℓ 2 → 0 in which J is strictly cosingular and Q is strictly singular. Manuel González (Santander) Many complemented subspaces September 13, 2019 7 / 16

  8. Some negative criteria [GP-16] Proposition Suppose that X contains a subspace isomorphic to ℓ 1 . Then X is not superprojective and X ∗ is not subprojective. Proof. If X contains ℓ 1 then there exists a surjective strictly singular Q : X → ℓ 2 such that Q ∗ : ℓ 2 → X ∗ is strictly cosingular. Remark This result suggests that, among the non-reflexive spaces, there are more subprojective spaces than superprojective spaces. Manuel González (Santander) Many complemented subspaces September 13, 2019 8 / 16

  9. Tensor products Proposition ([OS-15]) X , Y ∈ { c 0 , ℓ p 1 ≤ p < ∞} ⇒ X ˆ ⊗ π Y and X ˆ ⊗ ǫ Y subprojective. 1 2 ≤ p , q < ∞ ⇒ L p ( 0 , 1 )ˆ ⊗ ǫ L q ( 0 , 1 ) subprojective. 2 Proposition ([GP-16]) X , Y ∈ { c 0 , ℓ p 1 < p < ∞} ⇒ X ˆ ⊗ ǫ Y superprojective. 1 Let 1 < p , q < ∞ . Then 2 ℓ p ˆ ⊗ π ℓ q superprojective ⇔ p > q / ( q − 1 ) ⇔ ℓ p ˆ ⊗ π ℓ q reflexive. For 1 < p , q ≤ 2 , L p ( 0 , 1 )ˆ ⊗ π L q ( 0 , 1 ) is not superprojective. 3 Question 2 Is L p ( 0 , 1 )ˆ ⊗ π L q ( 0 , 1 ) subprojective when 2 ≤ p , q < ∞ ? 1 Is L p ( 0 , 1 )ˆ ⊗ ǫ L q ( 0 , 1 ) superprojective when 1 < p , q ≤ 2? 2 Manuel González (Santander) Many complemented subspaces September 13, 2019 9 / 16

  10. Spaces C ( K , X ) and L p ( X ) Let K be a compact space. C ( K ) subprojective ⇐ ⇒ C ( K ) superprojective ⇐ ⇒ K scattered. Theorem (GP-19) ⇒ C ( K , X ) ≡ C ( K )ˆ C ( K ) and X subprojective = ⊗ ǫ X subprojective. Question 3 C ( K ) and X superprojective ⇒ C ( K , X ) superprojective? Proposition (GP-16) X superprojective = ⇒ C ([ 0 , λ ] , X ) superprojective. Observation. (F .L. Hernández) [Y. Raynaud 1985]: For 2 < p < q < ∞ , L p ( L q ) is not subprojective (while L p and L q are). For 1 < s < r < 2, L r ( L s ) is not superprojective (while L r and L s are). Manuel González (Santander) Many complemented subspaces September 13, 2019 10 / 16

  11. Properties implying superprojectivity [GGP-17] Definition We say that X satisfies P weak if each non-weakly compact operator T : X → Y is an isomorphism on a copy of c 0 and X ∗ is hereditarily ℓ 1 . We say that X satisfies P strong if each non-compact operator T : X → Y is an isomorphism on a copy of c 0 . Proposition X satisfies P strong ⇒ X satisfies P weak ⇒ X is superprojective. 1 If X n (n ∈ N ) satisfy P strong then c 0 ( X n ) satisfies P strong . 2 If X and Y satisfy P strong then X ˆ ⊗ π Y satisfies P strong . 3 Manuel González (Santander) Many complemented subspaces September 13, 2019 11 / 16

  12. Properties implying superprojectivity [GGP-17] Examples Isometric preduals of ℓ 1 (Γ) satisfy P strong . 1 C ( K ) spaces with K scattered satisfy P strong . 2 The Hagler space JH satisfies P strong . 3 The Schreier space S and the predual of the Lorentz space 4 d ( w , 1 ) satisfy P weak but not P strong . In fact S ˆ ⊗ π S is not superprojective. Question 4 Find new examples of sub(super)projective Banach spaces. Manuel González (Santander) Many complemented subspaces September 13, 2019 12 / 16

  13. J -sums of Banach spaces I [GP-20] dim J ∗∗ / J = 1. J : James’ space. J and J ∗ are subprojective. By duality, J and J ∗ are superprojective. [S.F. Bellenot. The J -sum of Banach spaces. J. Funct. Analysis (1982)] i 1 i 2 i 3 ( X 1 , � · � 1 ) − → ( X 2 , � · � 2 ) − → ( X 3 , � · � 3 ) − → · · · � i k � ≤ 1 . J ( X n ) lim = { ( x i ) i ∈ N : x i ∈ X i , � ( x i ) � J : < ∞} . J = sup { � k − 1 i = 1 � x p ( i + 1 ) − φ p ( i + 1 ) where � ( x i ) � 2 ( x p ( i ) ) � 2 p ( i + 1 ) } , p ( i ) and the sup is taken over k ∈ N and p ( 1 ) < · · · < p ( k ) . Moreover, J ( X n ) = { ( x i ) ∈ J ( X n ) lim : lim i →∞ � ( x i ) � i : < ∞} . Manuel González (Santander) Many complemented subspaces September 13, 2019 13 / 16

  14. J -sums of Banach spaces II Observation [Bellenot]. J ( X n ) lim is a Banach space and J ( X n ) is a subspace of J ( X n ) lim . 1 If each X n is reflexive, then J ( X n ) ∗∗ ≡ J ( X n ) lim . 2 Theorem If each X n is subprojective , then so is J ( X n ) . 1 If each X n is superprojective, then so is J ( X n ) . 2 If each X ∗ n is subprojective, then so is J ( X n ) ∗ . 3 Manuel González (Santander) Many complemented subspaces September 13, 2019 14 / 16

  15. J -sums of Banach spaces III Special case : ( X n ) is an increasing sequence of subspaces of a Banach space Y with ∪ ∞ n = 1 X n dense in Y , and i k : X k → X k + 1 is the inclusion. Observation [Bellenot]. The expression U ( x k ) = lim k →∞ x k defines a surjective operator 1 U : J ( X n ) lim → Y with kernel J ( X n ) . If each X n is reflexive, then J ( X n ) ∗∗ / J ( X n ) ≡ J ( X n ) lim / J ( X n ) ≡ Y . 2 Theorem If Y is subprojective, then J ( X n ) is subprojective. Manuel González (Santander) Many complemented subspaces September 13, 2019 15 / 16

  16. Thank you for your attention. Manuel González (Santander) Many complemented subspaces September 13, 2019 16 / 16

Recommend


More recommend