matrices in modular lattices
play

Matrices in modular lattices Benedek Skublics G abor Cz edli - PowerPoint PPT Presentation

Title page Matrices in modular lattices Benedek Skublics G abor Cz edli University of Szeged Bolyai Institute The First Conference of PhD Students in Mathematics Szeged, 2010 B. S. (University of Szeged) Matrices in modular lattices


  1. Title page Matrices in modular lattices Benedek Skublics G´ abor Cz´ edli University of Szeged Bolyai Institute The First Conference of PhD Students in Mathematics Szeged, 2010 B. S. (University of Szeged) Matrices in modular lattices CSM2010 1 / 16

  2. Title page The outline of the talk: coordinatization von Neumann n -frames B. S. (University of Szeged) Matrices in modular lattices CSM2010 2 / 16

  3. Coordinatization Definition (nondegenerate projective space) Let A be a set (”points”), L ⊆ P ( A ) (”lines”). Then ( A , L ) is a projective space iff the following properties hold: 1 Every l ∈ L has at least three elements. 2 ∀ distinct p , q ∈ A , ∃ ! l ∈ L satisfying p , q ∈ l . 3 The Pasch Axiom holds. B. S. (University of Szeged) Matrices in modular lattices CSM2010 3 / 16

  4. Coordinatization Definition (nondegenerate projective space) Let A be a set (”points”), L ⊆ P ( A ) (”lines”). Then ( A , L ) is a projective space iff the following properties hold: 1 Every l ∈ L has at least three elements. 2 ∀ distinct p , q ∈ A , ∃ ! l ∈ L satisfying p , q ∈ l . 3 The Pasch Axiom holds. q x y p r B. S. (University of Szeged) Matrices in modular lattices CSM2010 3 / 16

  5. Coordinatization Definition (nondegenerate projective space) Let A be a set (”points”), L ⊆ P ( A ) (”lines”). Then ( A , L ) is a projective space iff the following properties hold: 1 Every l ∈ L has at least three elements. 2 ∀ distinct p , q ∈ A , ∃ ! l ∈ L satisfying p , q ∈ l . 3 The Pasch Axiom holds. q x y p r z B. S. (University of Szeged) Matrices in modular lattices CSM2010 3 / 16

  6. Coordinatization Example Let F be a field and let κ > 2 be a cardinal number. Then the one and two dimensional subspaces of F κ form a projective space. B. S. (University of Szeged) Matrices in modular lattices CSM2010 4 / 16

  7. Coordinatization Example Let F be a field and let κ > 2 be a cardinal number. Then the one and two dimensional subspaces of F κ form a projective space. The subspaces of F κ form a modular lattice. B. S. (University of Szeged) Matrices in modular lattices CSM2010 4 / 16

  8. Coordinatization Example Let F be a field and let κ > 2 be a cardinal number. Then the one and two dimensional subspaces of F κ form a projective space. The subspaces of F κ form a modular lattice. Modularity: x ∧ ( y ∨ ( x ∧ z )) ≤ ( x ∧ y ) ∨ ( x ∧ z ). B. S. (University of Szeged) Matrices in modular lattices CSM2010 4 / 16

  9. Coordinatization Figure: F = GF(2) , κ = 3 B. S. (University of Szeged) Matrices in modular lattices CSM2010 5 / 16

  10. Coordinatization Figure: F = GF(2) , κ = 3 B. S. (University of Szeged) Matrices in modular lattices CSM2010 5 / 16

  11. Coordinatization Figure: F = GF(2) , κ = 3 B. S. (University of Szeged) Matrices in modular lattices CSM2010 5 / 16

  12. Coordinatization Theorem (coordinatization) Let L be a directly irreducible Arguesian geometric lattice of length at least three. Then there exist a division ring D (”noncommutative field”), unique up to isomorphism, and a unique cardinal number κ such that L is isomorphic to the submodul (”subspace”) lattice of D κ D . B. S. (University of Szeged) Matrices in modular lattices CSM2010 6 / 16

  13. Coordinatization Theorem (coordinatization) Let L be a directly irreducible Arguesian geometric lattice of length at least three. Then there exist a division ring D (”noncommutative field”), unique up to isomorphism, and a unique cardinal number κ such that L is isomorphic to the submodul (”subspace”) lattice of D κ D . l line, 0 , 1 , ∞ ∈ l distinct points. D = l − {∞} . B. S. (University of Szeged) Matrices in modular lattices CSM2010 6 / 16

  14. Coordinatization Figure: F = GF(2) , κ = 3 B. S. (University of Szeged) Matrices in modular lattices CSM2010 7 / 16

  15. Coordinatization 0 1 ∞ Figure: F = GF(2) , κ = 3 B. S. (University of Szeged) Matrices in modular lattices CSM2010 7 / 16

  16. Coordinatization Addition l 0 a b ∞ B. S. (University of Szeged) Matrices in modular lattices CSM2010 8 / 16

  17. Coordinatization Addition q p l 0 a b ∞ 1 p , q B. S. (University of Szeged) Matrices in modular lattices CSM2010 8 / 16

  18. Coordinatization Addition r q p l 0 a b ∞ 1 p , q 2 r = ( a ∨ p ) ∧ ( q ∨ ∞ ) B. S. (University of Szeged) Matrices in modular lattices CSM2010 8 / 16

  19. Coordinatization Addition r q p s l 0 a b ∞ 1 p , q 2 r = ( a ∨ p ) ∧ ( q ∨ ∞ ) 3 s = ( p ∨ ∞ ) ∧ ( b ∨ q ) B. S. (University of Szeged) Matrices in modular lattices CSM2010 8 / 16

  20. Coordinatization Addition r q p s l 0 a b a+b ∞ 1 p , q 2 r = ( a ∨ p ) ∧ ( q ∨ ∞ ) 3 s = ( p ∨ ∞ ) ∧ ( b ∨ q ) 4 a + b = ( r ∨ s ) ∧ l B. S. (University of Szeged) Matrices in modular lattices CSM2010 8 / 16

  21. Coordinatization Multiplication l 0 1 a b ∞ B. S. (University of Szeged) Matrices in modular lattices CSM2010 9 / 16

  22. Coordinatization Multiplication p q l 0 1 a b ∞ 1 p , q B. S. (University of Szeged) Matrices in modular lattices CSM2010 9 / 16

  23. Coordinatization Multiplication r p q l 0 1 a b ∞ 1 p , q 2 r = (1 ∨ p ) ∧ ( q ∨ b ) B. S. (University of Szeged) Matrices in modular lattices CSM2010 9 / 16

  24. Coordinatization Multiplication r s p q l 0 1 a b ∞ 1 p , q 2 r = (1 ∨ p ) ∧ ( q ∨ b ) 3 s = (0 ∨ r ) ∧ ( p ∨ a ) B. S. (University of Szeged) Matrices in modular lattices CSM2010 9 / 16

  25. Coordinatization Multiplication r s p q l 0 1 a b ab ∞ 1 p , q 2 r = (1 ∨ p ) ∧ ( q ∨ b ) 3 s = (0 ∨ r ) ∧ ( p ∨ a ) 4 a + b = ( q ∨ s ) ∧ l B. S. (University of Szeged) Matrices in modular lattices CSM2010 9 / 16

  26. n -frames John von Neumann generalized the coordinatization for von Neumann regular rings ( ∀ a ∃ x : axa = a ) and complemented modular lattices containing a spanning n -frame. B. S. (University of Szeged) Matrices in modular lattices CSM2010 10 / 16

  27. n -frames Several people have investigated n -frames. B. Artmann R. Freese A. Day and D. Pickering A. Huhn C. Herrmann G. Cz´ edli B. S. (University of Szeged) Matrices in modular lattices CSM2010 11 / 16

  28. n -frames Definition ( n -frame) a = ( a 1 , . . . , a n ) ∈ L n and Let L be a bounded modular lattice. For � c = ( . . . , c ij , . . . ) ∈ L n ( n − 1) ( i � = j ) we say that ( � � a ,� c ) is a (spanning von Neumann) n-frame of L , if: 1 � a 1 , . . . , a n � ≤ L is a Boolean sublattice ( ∼ = 2 n ) with atoms a i ; 2 0 L , 1 L ∈ � a 1 , . . . , a n � ; 3 � a j , c jk , a k � is an M 3 for j � = k and 4 c ik = c ki = ( c ij + c jk )( a i + a k ) for distinct i , j , k . B. S. (University of Szeged) Matrices in modular lattices CSM2010 12 / 16

  29. n -frames n -frame Figure: von Neumann 3-frame B. S. (University of Szeged) Matrices in modular lattices CSM2010 13 / 16

  30. n -frames Product-frame Figure: Product-frame (G. Cz´ edli) B. S. (University of Szeged) Matrices in modular lattices CSM2010 14 / 16

  31. n -frames Product-frame Theorem (G. Cz´ edli, B. S.) ”The ring of the (original) frame is the matrix ring over the ring of the product frame.” B. S. (University of Szeged) Matrices in modular lattices CSM2010 15 / 16

  32. n -frames Product-frame Thank you! B. S. (University of Szeged) Matrices in modular lattices CSM2010 16 / 16

Recommend


More recommend