background simulations for the ixo wide field imager
play

Background Simulations for the IXO Wide Field Imager Steffen Hauf, - PowerPoint PPT Presentation

Background Simulations for the IXO Wide Field Imager Steffen Hauf, Markus Kuster, Dieter H.H. Hoffmann, Maria Grazia Pia, Eckhard Kendziorra, Philipp Lang, Alexander Stephanescu, Lothar Strder, Chris Tenzer and Georg Weidenspointner Credit:


  1. Background Simulations for the IXO Wide Field Imager Steffen Hauf, Markus Kuster, Dieter H.H. Hoffmann, Maria Grazia Pia, Eckhard Kendziorra, Philipp Lang, Alexander Stephanescu, Lothar Strüder, Chris Tenzer and Georg Weidenspointner Credit: NASA 18.08.2010| TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 1

  2. IXO Scientific Goals Study of AGN, accretion discs and black holes limited by ability to penetrate obscuring dust Hard X-rays can penetrate this dust Imaging of extended sources i.e. diffuce X-ray background at high energies requires long focal length Low background for faint and/or extended sources Images: Simbol-X Proposal 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 2

  3. The IXO Spacecraft X-ray Microcalorimeter Spectrometer Wide Field and Hard X-ray Imager X-Ray Polarimeter X-Ray Polarimeter X-Ray Grating Spectrometer High Time Resolution X-Ray Spectrometer 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 3 credit: NASA

  4. IXO & WFI Specifications IXO Optics Wide Field Imager (and HXI) •Optic system offers 10x the effective area Energy ranges 0.1 – 15 keV of XMM below 7 keV 5 – 40 keV •Effective area comparable to XMM up to 40 keV Resolution 1024 x 1024 px 5 “ 100 µm x 100 µm Pixel size Focal plane area 10.24 cm x 10.24 cm Filter Wheel WFI (DePFET based) credit: A. Parmar Graded- Z Shield 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 4 HXI

  5. IXO Radiation Environment Soft protons: variable intensity (flares: >1000%) patterns similar to X-rays Electronic Noise variable, continuous, constant, single bright pixels unpredictable spectrum patterns mostly distinct from X-rays Internal (cosmic ray induced) low energy tail flourescence, radioactive decay Shielding, magnetic deflection and direct hits GTI Cooling, electronics design, post patterns distinct from X-rays processing spatially dependent on materials, continuum spectrum with flourescence lines Graded-Z, post processing, material selection Hard and soft X-ray Background from AGN, galactic disc, sun thermal (soft), power-law (hard) spectrum, dominates below 5 keV Models in spectral analysis 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 5

  6. Geant4 Simulation Overview  Geant4 version: 4.9.1 & 4.9.2 (with patches, 64 bit) Simulation  Physics: Low-Energy EM, user output physics list for hadronics (binary cascade)  Geometry: hand-coded, CGS, IDL analysis pixelized detector (in tracking and package readout geometry) (pattern + MIP detection)  Source: GPS, user defined spectral input, spherical, isotropic  Output: FITS compatible events list, detailed output of processes and Background Detailed origins particle origin separatly possible. rate analysis 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 6

  7. IXO Radiation Enviroment The Simulation Input •CREME 96 1 ] 2 s - •Valid up to Mars orbit – so it solar minimum 1 cm - should be valid at L2 Flux [ Protons MeV - •Simulations at solar minimum • Mean flux: 2.31 protons/cm²/s solar maximum •Neglect He and heavier elements (<2% of total flux) Energy [MeV] 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 7

  8. WFI Geometrical Design and Simulation Implementation Mechanical Design Model GEANT4 Representation (C++) X-rays X-rays Approx. by primitives Thin layers + Si x O x , Si x N x ,Al (~10nm) Wafer-proximity in Si greater detail + BCB 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 8

  9. WFI Geometrical Design Influence of Fixed and Movable Instrument Platforms  Possibility to add XMS, MIP and FIP mass dummys  This prolongs the simulation time since more volume has to be irradiated by source → MIP longer runs for same statistics on detector  Change in count rate is negligable :  with satellite structs: 21.0 ± 2.7  w/o sattellite structs: 18.9 ± 0.3 x 10 - 4 cts/cm²/s/keV  Therefore most simulations w/o satellite structures XMS 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 9

  10. Pattern Detection as a Background Reduction Measure x 24% singles x 17 % valid 686,43 x 22% doubles x 0.5% valid 1000 no valid n>2 s / •Pattern detection for invalid patterns ² m 100 c caused by non-gamma particles (similar to / V 18,98 e XMM Newton) 9,39 k / 10 s •MIP detection t c •Significant reduction of background rate 4 - 0 1 •BUT: in wafer charge distribution not x 1 after detection modelled y et 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 10 raw rate with 400 px exclusion

  11. WFI Background Spectrum - Before Pattern and MIP Detection • No line emission except Si 70 Mio. primaries, with realistic wafer, WFI only – supressed by graded-Z shield sum electrons gammas • Electrons main component • Protons second strongest component • Flat spectrum Flux by Particle Species protons Particle Flux species (10 -4 cts/cm²/s/keV) 452.68 ± 1.52 e- others positrons 228.04 ± 1.08 p 91.04 ± 0.68 e+ γ 12.2 ± 0.25 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 11

  12. WFI Background Spectrum - After Pattern and MIP Detection 70 Mio. primaries, with realistic wafer, WFI only • Events produced by protons are suppressed by pattern recognition gammas electrons sum • Electron component one order of mag. stronger than → others outside Si-line primary optimization goal Flux by Particle Species Particle Flux species (10 -4 cts/cm²/s/keV) 11.21 ± 0.17 e- 0.12 ± 0.02 p 0.09 ± 0.2 e+ γ 7.54 ± 0.15 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 12

  13. Angular Distribution of Secondary Electron Component •Dominating electron component mainly incident at small angles → •Additional Al-layer on Si-wafer could help switch from simplified entrance window representation to more realistic one •Significant reduction Simplified Entrance Window Realistic Wafer Winkelverteilung der Elektronen im Detektor-Energiebereich XMS XMS WFI Box WFI Box Effects of Entr. Window Design Entrance window Flux 10 -4 cts/cm²/s/keV design 22.99 ± 0.31 simplified 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 13 18.98 ± 0.34 realistic

  14. Realistic Wafer Representation Problems encountered •Energy deposit at SiO – Si boundry shows unrealistically sharp peak •By default no secondary production in Si below approx. 10nm or 990 eV particles •Need to manually tell Geant to process these particles. → •Problem of scales (macroscopic vs. microscopic) known intensive work within nano5 R&D Entrance Window Wafer 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 14

  15. Optimization Possibilities  HXI, BGO and graded-Z are Secondary e- Production important contributers  Optimization of HXI and BGO needs to be coordinated with HXI group  Simplified simulation of shielding layers shows that changes in high-Z layer Arb. units configuration do not significantly change secondary electron production (see next slide) HXI HXI-WFI Al-filter BGO Graded-Z 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 15

  16. Influence of Graded-Z Composition on e- Production Secondary e- Production with Varying Ta-Thickness •Changes in high-Z layer thicknesses have marginal influence on secondary electron production •Electrons instead produced in next lower layers 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 16

  17. Comparison to Suzaku  IXO: simulation Suzaku: measured blank sky files  Similar pattern and MIP detection Suzaku BI algorithms  Similar detector specs: WFI 1024x1024 px, 0.4-12 keV energy range  IXO data is near solar Suzaku FI minimum while Flux Suzaku data was (10 -4 cts/cm²/s/keV) taken during 9.89 ± 18.98 (~1% error) intermediate cycle IXO Suzaku BI 30.25-80.25 ( err. unknown) Suzaku FI 13.75-27.50 (err. unknown) 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 17

  18. Summary  All major costituents of the background were identified.  Secondary electrons domitate background by one order of magnitude outside Si- K α line.  Currently implemented, non mass optimized graded-Z shield supresses all emission lines except Si (emitted from wafer bulk).  Graded-Z shielding is currently being optimized for mass and minimum electron production.  Main contributers of the different constituents indentified within the geometry. For secondary electrons: HXI and BGO and graded-Z shield.  Pattern and MIP detection algorithms significantly reduce the background by 90%, by reliantly identifying events due to protons and positrons.  Realistic representation of the entrance window is needed, since this has non- negliable influence on the dominating secondary electron component. 18.08.2010 | TU Darmstadt | Institut für Kernphysik | Steffen Hauf | 18

Recommend


More recommend